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ABSTRACT

Inertial navigation blended with other navigation aids like GPS, has gained sig-

nificance due to enhanced navigation and inertial reference performance. The INS,

individually can calculate the position of the aircraft without any help from the out-

side world. However, a large number of errors are introduced by sensors leading to an

unacceptable drift in the output. Hence a GPS is used to aid the INS, using a Kalman

filter which helps in estimating the errors in the INS and thus updating position to

improved accuracy.

The simulation of the integration of the INS and GPS using Kalman filtering has

been completed using MATLAB and C. This has been tested on the simulator for the

target hardware. The details have been explained in the report.
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Chapter 1

Introduction

For automatic machines, be it robots, aircraft or other autonomous vehicles, naviga-

tion is of utmost importance. Various systems are used in navigation of aircraft, viz.

inertial navigation systems (INS), global positioning systems (GPS), air-data dead

reckoning systems, radio navigation systems, Doppler heading reference systems, to

name a few. Our interest lies in integrating both the INS and the GPS to provide

the best possible estimate of the aircraft position in terms of the latitude, longitude

and height above the surface of the earth.

The INS gives us the position, velocity and attitude of the aircraft but it is inun-

dated with errors due to the fact that any small bias error can grow the error with

time. Hence, an update or position fix is taken from the GPS and using a Kalman

filter we can estimate the errors in both the INS and the GPS thus giving the user a

better position information.

Applications are not limited to aircraft alone. Although these integrated systems

find extensive usage in airborne vehicles, they have also been used in the navigation

of cars, ships and satellites.

There are considerable advantages in developing this kind of a navigation system

as compared to the ones used earlier in terms of compactness and speed. Micro-
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gyroscopes and GPS chips can be integrated on a small board and can effectively give

the position of the vehicle concerned. With the advent of MEMS technology, all this

can be done at extremely high levels of accuracy and at lower costs.

Our aim is to develop the GPS-INS integrated system so that it can be imple-

mented on realtime hardware like a microcontroller or a digital signal processor. Even

though high accuracy sensors like gyroscopes and accelerometers are available, their

costs are on the higher side. Usage of low cost and low accuracy sensors may find

application where high accuracy is not required. Initially the simulation of the whole

navigation would be done on a computer, where given the initial state of the air-

craft and regular updates from the sensors and the GPS, the program would return

the estimated position of the aircraft. Eventually this simulated model would be

implemented on realtime hardware.

The next chapter describes in brief some of the INS/GPS systems which have

been integrated and implemented on hardware. Chapter 3 gives an overview of the

working of each of the subsystems, i.e. the INS and the GPS followed by a theoretical

explanation of Kalman filtering in general. Chapter 4 describes how the simulation

has been done, viz. the INS programming, sensor modelling, GPS modelling and the

Kalman filter modelling. In this chapter we also see why the Kalman filtered output

is better than the output of the individual subsystems. The report concludes with

the chapter discussing the hardware used to run the program as well as the issues

associated with the working of the whole system.
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Chapter 2

Literature Survey

Several GPS-INS integration techniques have been implemented. Some of them are

described here briefly.

Schmidt [1] describes in detail the computations for a gimballed INS and the

strapdown INS. The 9 state Kalman filter which is discussed by him uses a barometric

altimeter to correct for the height. Bar-Itzhack et al [2] describes a control theoretical

approach to INS/GPS integration using Kalman filtering in his paper. The psi-angle

error model explained has been used extensively in many models of the INS/GPS

Kalman filter and also has been used in this project. Grewal et al [3, 4] have discussed

in their books the working of the INS, GPS and Kalman filtering in detail and have

given a complicated model of a possible Kalman filter with 54 states.

Wolf et al [5] use Systron Donner’s MotionPak inertial measurement unit (IMU)

and a Trimble Advanced Navigation Sensor (TANS) Vector receiver system (as the

GPS component), which is a multi-antenna, attitude determination and position lo-

cation system. They have developed a real-time navigation software to calculate

position, velocity and attitude from the outputs of the MotionPak gyroscopes and

accelerometers. Besides giving position and velocity updates, TANS also gives atti-

tude measurement data. A Kalman filter with 27 states has been implemented by

them. A Packard Bell 486 computer was used to carry out the computations.
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Grejner-Brzezinska et al [6] have tested the feasibility of attitude estimation im-

provement by using high accuracy deflection of vertical (DOV) information in the

integrated GPS/INS navigation system. The estimability of attitude components im-

proves by adding partially compensated gravity information. A fully digital Airborne

Integrated Mapping System (AIMS) has been designed and the integrated INS/GPS

forms an integral part of this AIMS. A dual frequency differential GPS (DGPS) and

the Litton LN100 IMU are tightly integrated. IMU data was updated at 256Hz. A

centralized 21 state Kalman filter was used to process the GPS L1/L2 signals as well

as the errors from the INS. Accuracy of order of 10cm was achieved.

Srikumar and Deori [7] have used an airdata based dead reckoning system to calcu-

late position of their MAV. Navigation accuracy has been improved by using updates

from a GPS receiver as well as a ground-based tracking system. A Pentium 90MHz

personal computer has been used to control navigation and many other features of

the aircraft.

Randle and Horton [8] describe in their works the integration of GPS/INS using

a low cost IMU consisting of micro-machined sensors and on-board calibration. Sim-

ulations have been done for both flight and automotive navigation. With complete

loss of GPS signals, position accuracy is shown to be less than 10m after 30s. Kalman

filter has 23 states and a DGPS was simulated to give measurement updates.

Navigation for reusable launch vehicles has been studied by Gaylor et al [9]. A

number of navigation sensors have been studied and the GPS/INS integrated system

was settled for. Error models of INS and GPS operating in the vicinity of the Inter-

national Space Station have been developed. Effects of signal blockage and multipath

errors of the GPS have been modelled. An extended Kalman filter with 18 states was

developed.

Brown and Sullivan [10] have described test results for a system that uses an im-

proved kinematic alignment algorithm suite providing high quality navigation solu-

tion using direct carrier-phase and pseudo-range GPS measurements, tightly coupled
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with measurements from a low cost IMU system. A 32 state Kalman filter has been

implemented using InterNav software made by Navsys Corporation.

Moon et al [11] first process the GPS values before sending it to their 9 state

Kalman filter. Honeywell’s HG1700 IMU has been used along with a Motorola UT

Oncore GPS, which can track 8 GPS satellites simultaneously. Salychev et al [12]

use MotionPak IMU and integrate it with GPS (GPS - GLONASS) and DGPS infor-

mation, to provide navigation capability to bridge GPS outages for tens of seconds.

Airborne and ground tests have been conducted and robustness of the system has

been studied. IMU data was recorded at 46Hz.

A 21 state filter using tightly coupled integration scheme was implemented by

Wang et al [13] and two digital signal processors were used to carry out the compu-

tations. A sensitivity performance has been analysed in their research paper.

Kwon [14] has studied airborne gravimetry and compared it to ground measure-

ment of gravity. The combination of GPS/INS is known to show very good perfor-

mances for recovering the gravity signal. A new algorithm using acceleration up-

dates instead of conventional position or velocity updates has been developed. It is

computationally proven to be less expensive since navigation equations need not be

integrated. Real flight data has been tested upon the system desgined by Kwon and

the simulations have been discussed in his works in detail. A comparative study of

the Kalman filter using traditional approach and the new approach has been done.

Ronnback [15] has tested his INS/GPS navigation filter written in C++ on an air

vehicle. A redundant 4 axes IMU called Tetrad has been used. A 9 state Kalman filter

was implemented with measurements of position and velocity from the GPS. Gautier

[16] has designed GPS INS generalized evaluation tool (GIGET) which aids in the

selection of sensor combinations for any general application or set of requirements.

It includes a unique five antenna, forty channel GPS receiver providing attitude,

position and timing. Honeywell’s HG1700 tactical grade IMU is integrated with this

GPS using a 21 state extended Kalman filter and tested on their homemade Dragonfly
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unmanned air vehicle.

In his work, Mayhew [17] proposes several methods for improving the position es-

timation capabilities of a system by incorporating other sensor and data technologies,

including Kalman filtered intertial navigational systems, rule-based and fuzzy-based

sensor fusion techniques, and a unique map-matching algorithm. Ground testing of

the system has been done. Dead reckoning sensors are used to collect odometry data.

A Pentium 133MHz computer was used to carry out all the computations and control

handling of the aircraft. The 9 state Kalman filter was run every time a measurement

update from the INS took place.

Moore and Qi [18] have implemented a direct Kalman filtering technique to inte-

grate their GPS and INS systems, where they use two stage GPS filtering to preprocess

the GPS data before the Kalman filter can use it. Their eight state direct Kalman

filter uses the position and velocity as its state vector. Shang et al [19] use two GPS

receivers to not only estimate the position but also the azimuth alignment. They use

a PC/104 microcomputer to carry out their computations. They have carried out a

tightly coupled implementation of the Kalman filter.

Cao et al [20] have implemented a 15 state Kalman filter successfully using MEMS

based sensors for intelligent transport systems. They have used a strapdown INS

system. Panzieri et al [21] have implemented a 5 state extended Kalman filter to

manouever a robot’s movements. They use a GPS because the usage of the robot is

outdoors.

Dorobantu and Zebhauser [22] have implemented an extended Kalman filter of

five states for a 2-D case as they are using it on a land vehicle. They use a DGPS to

get measurement updates every 1s and have discussed results when there are regular

GPS outages.
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Chapter 3

INS,GPS, Kalman filtering

Today’s trend in navigation sees the rise of integrated navigation systems, where the

components (sensors) that are usually integrated are the Inertial Navigation Systems

(INS) and the Global Positioning System (GPS). The integration of two subsystems

provides more accuracy than that of individual subsystems.

3.1 Inertial Navigation Systems

Figure 3.1: Orientation of axes

The INS consists of 3-axis gyroscopes which give the system computer the roll,
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pitch and yaw rates about the body axes as shown in figure 3.1 [23]. It also has

3-axis accelerometers which give the accelerations along the three body axes. There

are two basic inertial mechanisms which are used to derive the Euler angles from

the rate gyros, viz. stable platform and strap-down INS. We would be concerned

with the strap-down INS where the gyros and accelerometers are ‘strapped-down’ to

the aircraft body frame. The acceleration values from the accelerometers are then

corrected for rotation of the earth and gravity to give the velocity and position of the

aircraft.

3.1.1 Equations of Motion

The orientation of an aircraft with respect to a fixed inertial frame of axes is defined

by three Euler angles. The aircraft is imagined to be oriented parallel to the fixed

reference frame of axes. A series of rotations bring it to the orientation about axes

OX, OY and OZ, as shown in figure 3.2 [23]:

1. clockwise rotation about the yaw axis, through the yaw (or heading) angle ψ ,

followed by

2. a clockwise rotation about the pitch axis, through the pitch angle θ, followed

by

3. a clockwise rotation about the roll axis, through the bank angle φ.

The relationship between the angular rates of roll, pitch and yaw, p, q, r (measured

by the body mounted gyros), the Euler angles, ψ, θ, φ and their rates, is given below.











φ̇

θ̇

ψ̇











=











1 sin φ tan θ cosφ tan θ

0 cosφ − sin φ

0 sin φ sec θ cosφ sec θ





















p

q

r











(3.1)

By integration of the above equations we can derive the Euler angles using initial

conditions of a known attitude at a given time. But, for pitch angles around ±90◦,
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Figure 3.2: Euler Angles

the error becomes unbounded as tan θ tends to infinity. Quaternion algebra comes

to the rescue here. We use four parameters, called the Euler parameters, that are

related to the Euler angles as follows [24].

If e0, e1, e2, e3 were the four parameters then in terms of angular rates, we have

ė0 = −1

2
(e1p+ e2q + e3r) (3.2)

ė1 =
1

2
(e0p+ e2r − e3q) (3.3)

ė2 =
1

2
(e0q + e3p− e1r) (3.4)

ė3 =
1

2
(e0r + e1q − e2p) (3.5)

with the parameters satisfying the following equation at all points of time.

e0
2 + e1

2 + e2
2 + e3

2 = 1 (3.6)

The above equations can be used to generate the time history of the four parameters

e0, e1, e2, and e3. The initial values of the Euler angles are given which are used to
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calculate the initial values of the four parameters using the following equations.

e0 = cos
ψ

2
cos

θ

2
cos

φ

2
+ sin

ψ

2
sin

θ

2
sin

φ

2
(3.7)

e1 = cos
ψ

2
cos

θ

2
sin

φ

2
− sin

ψ

2
sin

θ

2
cos

φ

2
(3.8)

e2 = cos
ψ

2
sin

θ

2
cos

φ

2
+ sin

ψ

2
cos

θ

2
sin

φ

2
(3.9)

e3 = − cos
ψ

2
sin

θ

2
sin

φ

2
+ sin

ψ

2
cos

θ

2
cos

φ

2
(3.10)

Once we have calculated the time history of the four parameters, we can calculate

the Euler angles using the following equations.

θ = sin−1[−2(e1e3 − e0e2)] (3.11)

φ = cos−1

[

e0
2 − e1

2 − e2
2 + e3

2

√

1 − 4(e1e3 − e0e2)2

]

sign[2(e2e3 + e0e1)] (3.12)

ψ = cos−1

[

e0
2 + e1

2 − e2
2 − e3

2

√

1 − 4(e1e3 − e0e2)2

]

sign[2(e1e2 + e0e3)] (3.13)

We now have with us the attitude of the aircraft. To calculate the position we use

the accelerations given by the accelerometers.

The accelerations (ax, ay and az) of the aircraft along the three body axes, as read

by the accelerometers, are given by the equations 3.14 - 3.16. U , V , W and p, q, r

are all available as states. If the acceleration due to gravity (g) model is supplied as

a function of location around the earth, then U̇ , V̇ and Ẇ can be calculated.

U̇ = aX + V r −Wq + g sin θ (3.14)

V̇ = aY − Ur +Wp− g cos θ sin φ (3.15)

Ẇ = aZ + Uq − V p− g cos θ cosφ (3.16)

The earth is rotating in space at a rate Ω (15◦ per hour) around an axis South to

North as shown in figure 3.3.

Ω =











Ω cosλ

0

−Ω sinλ











(3.17)
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The motion of the vehicle at a constant height above the ground will induce an

additional rotation given by

ω
′ =











µ̇ cos λ

−λ̇

−µ̇ sin λ











(3.18)

The measured angular rates include Ω and ω
′, we have the actual angular rates given

Figure 3.3: Local earth frame or Navigation frame

by










p

q

r











=











p

q

r











m

− DCM
[

Ω + ω
′

]

(3.19)

where DCM is the the direction cosine matrix or the transformation matrix, from

the local earth or navigation frame to the body frame, given by equation 3.20, µ̇ is
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the rate of change of longitude and λ̇ is the rate of change of latitude. .

DCM =











cos θ cosψ cos θ sinψ − sin θ

sin θ sin φ cosψ − sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ sin φ cos θ

sin θ cosφ cosψ + sinψ sinφ sinφ sin θ cos φ− cosψ sin θ cosφ cos θ











(3.20)

U̇ , V̇ and Ẇ are integrated to calculate the velocity components (U , V and W ),

which are then transformed using the direction cosine matrix (equation 3.20) to give

velocity along North (VN), velocity along East (VE) and downward velocity (VD) in

the navigation frame or local earth frame, as shown in figure 3.3.











Ẋ

Ẏ

Ż











=











VN

VE

VD











= DCMT











U

V

W











(3.21)

VN , VE and VD are then integrated to give distances moved along the navigation

axes (X, Y, Z) on the surface of the earth. Let λ, µ and H denote the latitude,

longitude and height of the aircraft at any instant, then rate of change of latitude

[23, 25] is given by

λ̇ =
VN

Re

(3.22)

and rate of change of longitude is given by

µ̇ =
VE

Re cosλ
(3.23)

where Re is the radius of the earth. The rate of change of altitude of the aircraft is

given by

Ḣ = −VD (3.24)

The position of the aircraft in terms of latitude, longitude and altitude can be

thus calculated using equations 3.22, 3.23 and 3.24.
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3.1.2 Errors in the INS

Most INS errors are attributed to the inertial sensors (instrument errors). These

are the residual errors exhibited by the installed gyros and accelerometers following

calibration of the INS. The dominant error sources are shown in table 3.1[6, 26].

Table 3.1: Sensor generated errors in the INS

Alignment errors roll, pitch and heading errors

Accelerometer bias or offset a constant offset in the accelerometer output

that changes randomly after each turn-on.

Accelerometer scale factor error results in an acceleration error proportional to

sensed acceleration.

Nonorthogonality of gyros the axes of accelerometer and gyro

and accelerometers uncertainty and misalignment.

Gyro drift or bias a constant gyro output without angular

(due to temperature changes) rate presence.

Gyro scale factor error results in an angular rate error

proportional to the sensed angular rate

Random noise random noise in measurement

Errors in the accelerations and angular rates lead to steadily growing errors in

position and velocity components of the aircraft, due to integration. These are called

navigation errors and there are nine of them – three position errors, three velocity

errors, two attitude errors and one heading error. If an unaided INS is used, these

errors grow with time. It is for this reason that the INS is usually aided with either

GPS, Doppler heading sensor or air-data dead reckoning systems. Gravity model can

also cause some errors. The acceleration due to gravity varies from place to place

along the earth and also with height. These errors have to be modelled accordingly.

Inertial sensors for strapdown systems experience much higher rotation as com-

pared to their gimballed counterparts. Rotation introduces error mechanisms that
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require attitude rate-dependent error compensation.

3.2 Global Positioning System

3.2.1 Introduction

GPS uses a one-way ranging technique from the GPS satellites that are also broad-

casting their estimated positions. Signals from four satellites are used with the user

generated replica signal and the relative phase is measured. Using triangulation the

location of the receiver is fixed. Four unknowns can be determined using the four

satellites and appropriate geometry : latitude, longitude, altitude and a correction to

the user’s clock. The GPS receiver coupled with the receiver computer returns eleva-

tion angle between the user and satellite, azimuth angle between the user and satellite,

measured clockwise positive from the true north, geodetic latitude and longitude of

the user.

The GPS ranging signal is broadcast at two frequencies : a primary signal at

1575.42 MHz (L1) and a secondary broadcast at 1227.6 MHz (L2). Civilians use

L1 frequency which has two modulations, viz. C/A or Clear Acquisition (or Coarse

Acquistion) Code and P or Precise or Protected Code. C/A is unencrypted signal

broadcast at a higher bandwidth and is available only on L1. P code is more precise

because it is broadcast at a higher bandwidth and is restricted for military use. The

military operators can degrade the accuracy of the C/A code intentionally and this

is known as Selective Availability. Ranging errors of the order of 100m can exist

with Selective Availability. There are six major causes of ranging errors : satellite

ephemeris, satellite clock, ionospheric group delay, tropospheric group delay, multi-

path and receiver measurement errors, including software.

The primary role of GPS is to provide highly accurate position and velocity world-

wide, based on range and range-rate measurements. GPS can be implemented in

navigation as a fixing aid by being a part of an integrated navigation system, for
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example INS/GPS.

3.2.2 Errors in GPS

Ephemeris errors occur when the GPS message does not transmit the correct satellite

location and this affects the ranging accuracy. These tend to grow with time from the

last update from the control station. Satellite clock errors affect both C/A and P code

users and leads to an error of 1-2m over 12hr updates [27]. Measurement noise affects

the position accuracy of GPS pseudorange absolute positioning by a few meters.

The propagation of these errors into the position solution can be characterized by a

quantity called Dilution of Precision (DOP) which expresses the geometry between

the satellite and the receiver and is typically between 1 and 100. If the DOP is greater

than 6, then the satellite geometry is not good. Ionospheric and tropospheric delays

are introduced due to the atmosphere and this leads to a phase lag in calculation

of the pseudorange.These can be corrected with a dual-frequency P-code receivers.

Multipath errors are caused by reflected signals entering the front end of the receiver

and masking the correlation peak. These effects tend to be more prominent due to

the presence of reflective surfaces, where 15m or more in ranging error can be found

in some cases.

3.3 Kalman Filtering

The Kalman Filter (KF) is a very effective stochastic estimator for a large number of

problems, be it in computer graphics or in navigation. It is an optimal combination,

in terms of minimization of variance, between the prediction of parameters from a

previous time instant and external observations at a present time instant.
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3.3.1 Discrete Kalman Filter

The KF addresses the general problem of trying to estimate the state x ∈ <n of a

discrete-time controlled process that is governed by the linear stochastic difference

equation [3, 4, 28]

xk = Axk−1 +Buk + wk−1 (3.25)

with a measurement z ∈ <m that is

zk = Hxk + vk. (3.26)

The variables wk and vk represent the process and measurement noise respectively.

They are assumed to be independent of each other, white, and with normal probability

distributions

p(w) ∼ N(0,Q), (3.27)

p(v) ∼ N(0,R). (3.28)

Q is the process noise covariance and R is the measurement noise covariance. Equa-

tion 3.25 is similar to the standard state differential equation

ẋ = Ax +Bu (3.29)

where x is the state vector and u is the input or driving function, the only difference

being that equation 3.25 is a system whose state vector is sampled for discrete time

state, whereas equation 3.29 is sampled for continuous time state.

The n×n matrix A in the difference equation 3.25, relates the state at the previous

time step k − 1 to the state at the current time step k, in the absence of a driving

function or a process noise. The n × 1 matrix B relates the optional control input

u ∈ <n to the state x. The m× n matrix H in equation 3.26 relates the state xk to

the measurement zk.

An initial estimate of the process at some point tk is assumed, and this estimate

is based on our knowledge of the process prior to tk. Let this a priori estimate be

denoted by x̂−

k , where the “hat” denotes estimate, and the “super minus” reminds us
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that this is the best estimate we have prior to assimilating the measurement at tk.

Assuming that the error covariance matrix associated with x̂−

k is also known, then

the estimation error is defined as

ê−

k = xk − x̂−

k , (3.30)

and the associated covariance matrix as

Pk
− = E[e−

k e−T
k ] = E[(xk − x̂−)(xk − x̂−)T ] (3.31)

Since we have assumed a prior estimate x̂−

k , we use zk to improve the prior estimate,

by the following equation.

x̂k = x̂−

k + Kk(zk − Hkx̂
−

k ) (3.32)

where x̂k is the updates estimate and Kk is the blending factor or Kalman gain that

minimizes the a posteriori error covariance equation 3.33.

Pk = E[eke
T
k ] = E[(xk − x̂)(xk − x̂)T ] (3.33)

Substituting equation 3.26 into 3.32 and then substituting the resulting expression

into 3.33 we get

Pk = (I − KkHk)P
−

k (3.34)

where the Kalman gain which minimizes the mean-square estimation error is given

by

Kk = P−

k HT
k (HkP

−

k HT
k + Rk)

−1. (3.35)

We then estimate the next step measurement x̂−

k+1, the error covariance P−

k+1 and

repeat the process.

x̂−

k+1 = Akx̂k +Bkuk (3.36)

P−

k+1 = AkPkA
T
k + Qk (3.37)

We ignore the contribution of wk because it is a zero mean function and not correlated

with the earlier w’s.
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Figure 3.4: The Kalman filter loop

3.3.2 Kalman filter and navigation

KF is an extremely effective and versatile procedure for combining noisy sensor out-

puts to estimate the state of a system with uncertain dynamics. Noisy sensor outputs

include outputs from the GPS and INS; state of the system may include position, ve-

locity, attitude and attitude rate of a vehicle or an aircraft; and uncertain dynamics

includes unpredictable disturbances in the sensor parameters or disturbances caused

by a human operator or a medium (like wind).

The KF is used to estimate the errors introduced into the unaided INS system

due to the gyros and accelerometers as discussed in table 3.1. These errors form

the state vector x̂k and the measured values of the state vector from the GPS forms

the measurement vector z. Once the errors are modelled, the KF loop, as shown in

figure 3.4, is implemented after giving the initial estimates of the state vector and its

covariance matrix at time t = 0. This is the GPS-aided INS system configuration,

and the errors are either compensated by the feedforward or the feedback mechanism

as shown in figures 3.5 and 3.6.
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Figure 3.5: Feedforward aided INS

Figure 3.6: Feedback aided INS
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Chapter 4

Simulation

The simulation of the integration of INS and GPS using a Kalman filter has been done.

Separate programs have been written for modelling the INS, creating the errors in

the sensors and modelling the output of the GPS using both MATLAB and C.

4.1 Implementation

A program called Flight Dynamics and Controls (FDC) toolbox, when given the

initial conditions of the aircraft thrust and aerodynamics, gave as its output the time

history of the aircraft in the form of a state vector X, where

X =
[

φ θ ψ p q r ax ay az X Y Z VT α β
]T

(4.1)

- φ, θ, ψ are the Euler angles in radians,

- p, q, r are the roll, pitch and yaw rates from the gyroscopes in radians per second,

- ax, ay, az are the accelerations from the accelerometers in m/s2,

- X, Y, Z are the distances along the three axes in the navigation frame in meters,

- VT , α, β are the velocity of the aircraft in m/s, the angle of attack in radians

and the sideslip angle in radians, respectively.
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The FDC program can generate these values at any time step as required. Typical

time steps or update rates range from 10ms - 100ms.

4.1.1 INS module

The INS program now takes 6 states from this time history, viz. p, q, r, ax, ay, az.

These act as if the program is reading directly from the gyros and accelerometers.

Then the program integrates and calculates the four Euler parameters using equations

3.2 - 3.6. From these Euler parameters, the Euler angles are calculated using equations

3.11 - 3.13. Now the accelerations from the accelerometers are used to calculate U̇ ,

V̇ , Ẇ given by equations 3.14 - 3.16, which are then integrated to get the values of

U , V , W .

We now have the velocity components of the aircraft in the body frame. To

convert it to the navigation frame or local earth frame, we use the DCM matrix, as

in equation 3.20, and calculate VT using equation 3.21. These velocity components

are then integrated to get the position X, Y , Z along the three axes in the local earth

frame. The latitude, longitude and height can be calculated using equations 3.22 -

3.24. All the integrations are carried out using fourth order Runge-Kutta methods.

The initial conditions for time t = 0 have to be given and they are calculated

using the values generated by the FDC at t = 0. Equations 3.7 - 3.10 are used to

calculate the values of the four Euler parameters at t = 0 taking the values of φ, θ,

ψ from the FDC state vector X. Similarly, the initial values of the velocities are also

calculated using the following equations [23],

U = VT cosα cos β (4.2)

V = VT sin β (4.3)

W = VT cos β sinα, (4.4)

where the values of VT , α, β are taken from the FDC state vector X at time t = 0.

Finally, the initial values of X, Y , Z are also taken from their corresponding FDC
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counterparts.

4.1.2 GPS module

The GPS gives the latitude, longitude and altitude of the current location of the

receiver. What our program does is that it converts the X, Y , Z given out by the

FDC into latitude, longitude and altitude as would be given out by the GPS receiver.

The update rate is 1 second. The GPS program uses WGS-84 approximation in

which the earth is considered as an ellipse with a semi-major axis (equatorial radius)

of a = 6, 378, 137m, and a semi-minor axis (polar radius) of b = 6, 356, 752.3142m

[29].

It is necessary to define the distance corresponding to a 1◦ change in longitude

(Flon) and latitude (Flat) for a specified location (latitude and height or altitude).

The following equations define Flon and Flat for a specified latitude λ and height h.

Flon =
π

180◦

(

a2

√
a2 cos2 λ+ b2 sin2 λ

+ h

)

cosλ (4.5)

Flat =
π

180◦

(

a2b2

(

a2 cos2 λ+ b2 sin2 λ
)

3

2

+ h

)

(4.6)

Hence, the latitude and longitude at the current location (λ2, µ2) can be calculated

from the latitude and longitude from the previous location (λ1, µ1) in the following

manner :

λ2 =
δX

Flat

+ λ1, (4.7)

µ2 =
δY

Flon

+ µ1. (4.8)

where δX and δY are the changes in position along North direction and East direction

on the earth, respectively. If we consider the earth as a sphere, Flon and Flat can

be replaced by just the radius of the earth and the latitude and longitude can be

calculated. However, to make the GPS modeling more authentic, we have considered

the earth as an ellipse.
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4.1.3 Sensor Modelling

The accelerometer senses the acceleration in terms of g and sends it to the INS in

Volts by conversion using a scale factor. A certain offset at zero g called the bias exists

by default. The scale factor and the bias details are available from the specification

sheets of the accelerometers. Errors arise in the acceleration sensed because the scale

factor and the bias are not fixed. They vary stochastically and they lie within a

certain range which is specified in the data sheets of the accelerometers. Let C mV/g

be the nominal scale factor, c mV/g be the possible deviation from the nominal scale

factor, D be the voltage at 0 g offset and d be the deviation from that offset. If a0 is

the acceleration sensed by the accelerometer then, the output from the accelerometer

in voltage units is given by

Accoutput = (C ± c)a0 + (D ± d) (4.9)

c and d are normally distributed random numbers with zero mean, and c/3 and d/3

as the standard deviations, respectively. d changes randomly after each turn-on.

This voltage signal from the accelerometer passes through the ADC. Hence, we

have to include the errors for the ADC as well in Accoutput. If we use a 16-bit ADC

with a range of 0 − 5000mV, we divide Accoutput with 5000
65536

, round off the result and

then multiply it by 5000
65536

, thus incorporating the errors due to the ADC into the

acceleration measured by the accelerometer. Once this is done, the Accoutput is the

digitized voltage output which has to be converted back to acceleration in terms of g

which is done using the following equation,

a =
Accoutput −Dc

Cc

(4.10)

where a is the acceleration value sent to the INS program, Cc andDc are the calibrated

values of the scale factor and bias, respectively. The gyroscope error modelling is also

done in a similar way accounting for the corresponding scale factors and offset biases.

These errors together lead to a drift, which grows with time, in the output (location)

given by the INS and it could be up to hundreds of metres. Table 4.1 gives a set
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of values given by the specification sheets which were used in the simulation. The

errors due to temperature effects and due to the misalignment of accelerometers and

gyroscopes have been ignored.

Table 4.1: Sensor specifications used in the simulation

Quantity Value Standard Deviation

Scale factor of the accelerometer 250 mV/g ± 25
3

mV/g

Zero g Offset of the accelerometer 2500 mV ± 625
3

mV

Scale factor of the gyroscope 1.11 mV/◦/s ± 10
3
%

Typical turn-on drift of the gyroscope 0.12 ◦/s –

Random noise incorporated in the GPS – ±20 m

4.1.4 Kalman Filter Module

The error dynamics model given in the works of Schmidt [1], Bar-Itzhack et al [2],

and Grewal [4] has been used for the simulation. The error dynamics equations are

obtained when the nominal equations are perturbed in the local level north-pointing

coordinate system that corresponds to the geographic location indicated by the INS.

The differential equations that describe the error behavior of the INS are divided

into equations describing the propagation of the translatory errors and equations

describing the propagation of attitude errors. Translatory errors are the velocity and

position errors. The translatory errors and the attitude errors are not coupled to each

other. The nine state INS/GPS integration Kalman filter will then be built using the

error dynamics equations. The perturbation of the position, velocity, attitude DCM,

and gravity can be expressed as

r̂n = rn + δrn (4.11)

v̂n = vn + δvn (4.12)

Ĉn
b = (I − En)Cn

b (4.13)
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γ
n = gn + δgn (4.14)

where rn, vn and γ
n denote the position, velocity and gravity vectors in the nav-

igational frame, respectively; Cn
b denotes the attitude direction cosine matrix from

the navigational frame to the body frame and En is the skew symetric form of the

attitude errors (εn)

En = (εn×) =











0 −εD εE

εD 0 −εN
−εE εN 0











(4.15)

andˆand δ denote computed values and errors, respectively.

The linear position error dynamics can be obtained by perturbing equations 3.22 -

3.24, which are the dynamics equations for the geodetic positions. Since the position

dynamics equations are functions of position and velocity, the position error dynamics

equations are obtained using partial derivatives [30]:

δr̂n = Frrδr
n + Frvδv

n (4.16)

where

Frr =











∂λ̇
∂λ

∂λ̇
∂µ

∂λ̇
∂h

∂µ̇

∂λ

∂µ̇

∂µ

∂µ̇

∂h

∂ḣ
∂λ

∂ḣ
∂µ

∂ḣ
∂h











=











0 0 −VN

(Re+h)2

VE sinλ
(Re+h) cos2 λ

0 −VE

(Re+h)2 cos λ

0 0 0











,

Frv =











∂λ̇
∂VN

∂λ̇
∂VE

∂λ̇
∂VD

∂µ̇

∂VN

∂µ̇

∂VE

∂µ̇

∂VD

∂ḣ
∂VN

∂ḣ
∂VE

∂ḣ
∂VD











=











1
Re+h

0 0

0 1
(Re+h) cos λ

0

0 0 −1











and Re is the radius of the earth and is considered a constant.

The velocity dynamics equation is expressed as

ˆ̇v
n

= Ĉn
b f

b − (2Ω + ω
′) × v̂n + γ

n (4.17)

where f b is the acceleration of the aircraft in the body frame, Ω and ω
′ are given in

equations 3.17 and 3.18. The gravitation vector in the navigation frame, gn, can be
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appromiated by the normal gravity vector
(

0 0 γ
)T

, and γ varies with altitude.

Assuming a spherical earth model, we can write

γ = γ0

(

Re

Re + h

)2

, (4.18)

where γ0 is the normal gravity at h = 0. On perturbing equation 4.17 and using

equations 3.17, 3.18 and 4.18, we can obtain the velocity error dynamics equation

[1, 2, 30] as follows :

δv̇n = Fvrδr
n + Fvvδv

n + (fn×)εn + Cn
b δf

b (4.19)

where

Fvr =











−2VEΩ cos λ− V 2

E

(Re+h) cos2 λ
0 −VN VD

(Re+h)2
+

V 2

E
tan λ

(Re+h)2

2Ω(VN cosλ− VD sin λ) + VEVN

(Re+h) cos2 λ
0 VEVD

(Re+h)2
− VN VE tan λ

(Re+h)2

2VEΩ sin λ 0
V 2

E
+V 2

N

(Re+h)2
− 2γ

(Re+h)











,

Fvv =











VD

Re+h
−2Ω sin λ− 2VE tan λ

Re+h
VN

Re+h

2Ω sinλ+ VE tan λ
Re+h

VD+VN tan λ
Re+h

2Ω cosλ+ VE

Re+h

−2 VN

Re+h
−2Ω cos λ− 2 VE

Re+h
0











and δf b is the perturbation in the acceleration vector in the body frame.

The attitude error dynamics equation [30] can be written as

ε̇
n = Ferδr

n + Fevδv
n − ((Ω + ω

′)×)εn − Cn
b δω

b
ib (4.20)

where

Fer =











−Ω sin λ 0 −VE

(Re+h)2

0 0 VN

(Re+h)2

−Ω cos λ− VE

(Re+h) cos2 λ
0 VE tan λ

(Re+h)2











,

Fev =











0 1
Re+h

0

−1
Re+h

0 0

0 − tan λ
Re+h

0










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and δωb
ib is the perturbation in the angular rate vector between the inertial frame and

the body frame.

A state space model (equation 3.29) can be constructed by augmenting the equa-

tions 4.16, 4.19 and 4.20 as follows :

ẋ = Fx +Gu (4.21)

where F is the dynamics matrix, x is the state vector, G is a design matrix, u is the

forcing vector function [1, 2, 30]:

F =











Frr Frv 0

Fvr Fvv (f b×)

Fer Fev −((Ω + ω
′)×)











x =











δrn

δvn

ε
n











G =











0 0

Cn
b 0

0 −Cn
b











u =





δf b

δωb
ib





The elements of u are white noise whose covariance matrix is given by

E[u(t)u(t)T ] = Q(t)δ(t− τ) (4.22)

where the operator δ denotes the Dirac delta function whose unit is 1/time [30]. Q

is called the spectral density matrix and has the form

Q = diag
(

σ2
ax σ2

ay σ2
az σ2

ωx σ2
ωx σ2

ωz

)

(4.23)

where σa and σω are the standard deviations of the accelerometers and gyroscopes,

respectively.

We now transform equation 4.21 to its discrete time form :

xk+1 = Φkxk + wk (4.24)

where Φk is the state transition matrix, and wk is the driven response at tk+1 due

to the presence of input white noise during time interval (tk, tk+1) [28]. For the
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implementation of the INS, because the time interval ∆t = tk+1 − tk is very small, we

can numerically approximate the state transition matrix as

Φk = exp(F∆t) ≈ I + F∆t (4.25)

The covariance matrix associated with wk is

Qk = E[wkw
T
k ] ≈ ΦkGQG

T ΦT
k ∆t (4.26)

If the norm of Qk is larger than the real one, the Kalman filter trusts the measure-

ments more than the system, thus making the estimates noisy due to free passage of

measurement noise [30]. However, there is no time lag. If the norm of Qk is less than

one, the time lag exists. When the norm of Qk is much smaller than the real one,

the filter diverges, which may result in numerical instabilities. Hence, for low cost

inertial systems, Qk must be selected pessimistically so that the trajectory follows

that of the GPS. The elements corresponding to δfz should be large enough so that

they can account for the uncertainties in gravity as well as sensor imperfection.

The observation equation 3.26 expresses the vector measurement, zk, at time tk

as a linear combination of the state vector xk and a random measurement error, vk.

The process noise, wk and the measurement noise, vk are uncorrelated, hence their

covariance is 0. The covariance matrix for vk is given by

E[vkv
T
k ] = Rk (4.27)

The Kalman filter is then implemented using equations 3.32 - 3.37. The position from

GPS is considered as measurements. The formulation of the measurement equation

can be written as

zk = rn
INS − rn

GPS =











λINS − λGPS

µINS − µGPS

hINS − hGPS











Hk =
(

I3×3 03×3 03×3

)

(4.28)

Since λ and µ are in radians and hence very small, they cause numerical unstabil-

ities in calculating the Kalman gain Kk. Hence, the first two rows are multiplied by
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(Re + h) and (Re + h) cosλ, respectively [30]. The measurement equation now takes

the form :

zk =











(Re + h)(λINS − λGPS)

(Re + h) cosλ(µINS − µGPS)

hINS − hGPS











Hk =











(Re + h) 0 0

0 (Re + h) cosλ 0 03×3 03×3

0 0 1











(4.29)

and the following measurement noise matrix has been used

Rk = diag
(

σ2
λ σ2

µ σ2
h

)

(4.30)

which can be obtained from GPS processing. In our simulation, we have taken the

error sphere of the GPS to have a radius of 20m. Hence σλ = σµ = σh = 20m.

The initial estimation uncertainty standard deviations must be given to start a

Kalman filter. If an inertial measurement unit is initialised in stationary mode, the

position uncertainty will be that of the GPS solution, the velocity uncertainty zero

and the attitude uncertainty will depend wholly on the accelerometer and gyroscope

biases [30]. If the biases can be estimated, the attitude uncertainty can be reduced.

The estimated errors are fed back to the mechanization (INS module) (see figure

3.6) or fed forward to the output (figure 3.5). In the feedforward method, the inertial

system operates as if there was no aiding : it is unaware of the existence of the filter

or the external data. The disadvantage of this method is that the mechanization

can experience unbounded error growth, which makes unbounded error observations

delivered to the Kalman filter. This causes problem to the linear filter since only

small errors are allowed due to the linearization process. Therefore, the feedback

method is optimal for low cost INSs. The estimated state vector xk is used to correct

for the position, velocity and attitude calculated by the INS, using equations 4.11 -

4.13 every time a measurement, zk, is taken, i.e. every 1 second.
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rn = r̂n − δrn (4.31)

vn = v̂n − δvn . (4.32)

The following characteristic holds for the first order attitude errors :

(I − En)−1 = (I + En) (4.33)

Hence, equation 4.13 can be manipulated to yield the DCM attitude feedback as

follows :

Cn
b = (I + En)Ĉn

b (4.34)

After feedback is done, the error state vector should be set to zero, because the

state vector is zero until the next measurements are made for a feedback nine-state

INS/GPS integration Kalman filter. If the feedback is made everytime measurements

take place, the state prediction does not need to be implemented [30].

4.2 Results

In this section we discuss the results obtained from the simulation of individual sub-

systems, i.e. the INS and GPS and the integrated system.

4.2.1 Individual subsystems

Due to mechanical errors existing in the accelerometers and gyroscopes, the INS,

individually, does not accurately give the position of the aircraft. As seen in figures

4.1 - 4.3, the unaided INS (blue line) deviates from the actual trajectory (black line)

by a very large extent. This simulation has been done by modelling the sensors as

explained in section 3.1.3. The updates from the gyroscopes and accelerometers are

taken every 10ms. The above mentioned figures show us the typical output given
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by the GPS (red circles), with an update taken every second. A standard deviation

of 20m has been assumed in modelling the GPS output. The GPS has a long term

accuracy and the INS has a short term accuracy, hence the individual systems by

themselves are not enough to give us a good and accurate measure of the location. If

Selective Availability is introduced, the GPS output would have a standard deviation

of around 40-50m. Hence, we go for an integrated system of the INS and GPS using

a Kalman filter.
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Figure 4.1: Distance along North calculated by the unaided INS and GPS

Figure 4.2: Distance along East calculated by the unaided INS and GPS

Figure 4.3: Altitude calculated by the unaided INS and GPS

32



4.2.2 Integrated system

A nine-state model Kalman filter was implemented as described in section 3.1.4.

Figures 4.4 - 4.2.2, show the output of the simulation as well as the GPS output

simulated for a period of 200s. The standard deviation chosen for the accelerometers

here was 10mGal. The standard deviations of the accelerometers was varied and we

have got two sets of outputs. As given in the works by Ronnback [15] and Shin [30],

the standard deviations of the accelerometers were increased to give an output with

a much better accuracy as seen in figures 4.7 - 4.9. The standard deviations of the

accelerometers chosen was 30mGal.

The update from the accelerometers and gyroscopes was taken every 0.01s, the

GPS update was taken every 1s and the Kalman filter was run every 0.5s [17] to

achieve better accuracy. Every alternate 0.5s instant, when the GPS update is not

available, equation 3.32 is used to predict the error state x̂k, using the most recent

GPS update as the measurement, i.e. the GPS update is taken constant for that

whole one second. This also comes in use when there are GPS outages. Whenever

the GPS update is taken, x̂−

k is made zero, and whenever the GPS update is not taken

(every alternate 0.5s or when there are GPS outages), x̂−

k is left as it is and updated

using the equations 3.32 - 3.36.

The graphs for attitude computed and corrected by the Kalman filter are given

in figures 4.10 - 4.12. We cannot expect the Kalman filter to correct the attitude

given by the INS perfectly as attitude is not a part of the measurement vector. We

can only correct the attitude given by the INS using the attitude errors predicted by

the state matrix. This corrected attitude forms a part of the integration loop in the

whole system. The graphs 4.10 - 4.12 correspond to the graphs 4.7 - 4.9.

Figures 4.13 - 4.15 show us the results from running the program when we assume

a GPS outage of 8s, from the period t = 25s to t = 32s. For this time period of GPS

outage, the GPS values used by the program remain the same as the last measured

values, i.e. the values measured at t = 24s. At t = 33s, the GPS starts reading again,
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and new values are read by the program. During this time the Kalman filter relies

totally on the INS and state predictions, and the accuracy is affected as we can see

from the graphs. But once the new GPS values are read by the program, the Kalman

filter takes very less time, of the order of a few seconds, to settle down towards the

actual trajectory.

If Selective Availability (SA) is introduced or exists in the GPS, the standard

deviation of the GPS position measured is around 40-50m. Figures 4.16 - 4.18 show

the output of the program, when SA was introduced with a standard deviation of

40m. The Kalman filter does not know that SA has been introduced, and it still

uses the standard deviation of 20m, as given by the specification sheets of the GPS

receiver, in the measurement noise covariance matrix Rk. SA has been introduced in

the GPS values for the period of 200s. We can see that due to introduction of SA,

the accuracy of the output has decreased but it still better than the GPS but not as

good as what it would be without SA. If while running the program for a longer time,

suddenly we introduce SA, even then the program will not waver from its regular

output, although the accuracy will decrease for the time period in which SA has been

introduced.
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Figure 4.4: Kalman filtered output of distance along North

Figure 4.5: Kalman filtered output of distance along East

Figure 4.6: Kalman filtered output of Altitude
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Figure 4.7: Distance along North calculated with higher variance of accelerometers

Figure 4.8: Distance along East calculated with higher variance of accelerometers

Figure 4.9: Altitude calculated with higher variance of accelerometers
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Figure 4.10: Euler angle Phi vs Time
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Figure 4.11: Euler angle Theta vs Time
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Figure 4.12: Euler angle Psi vs Time
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Figure 4.13: Distance along North calculated with GPS outage between 25s and 33s
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Figure 4.14: Distance along East calculated with GPS outage between 25s and 33s
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Figure 4.15: Altitude calculated with GPS outage between 25s and 33s
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Figure 4.16: Distance along North calculated with Selective Availability introduced
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Figure 4.17: Distance along East calculated with Selective Availability introduced
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Figure 4.18: Altitude calculated with Selective Availability introduced
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Chapter 5

Hardware Implementation

The present study is undertaken concurrently with a Masters project to design and

develop a hardware for implementing the INS/GPS integrated system [35]. The ob-

jective of this project included generating requirements for the other project and to

test the INS/GPS integrated system program on the hardware. The hardware has

been specifically designed [35] for a mini aerial vehicle (MAV). For the computations

of the INS and the Kalman Filter a digital signal processor (DSP) has been used in

the hardware.

5.1 Hardware Description[35]

The system to be used is compact,light and single supply operated. The schematic

of the whole system is shown in figure 5.1.

The system can be divided into two blocks :

• GPS and INS Data Acquisition (GIDAC) card

• Navigation Processor Card (NPC)

The analog signals from the accelerometers and gyroscopes are signal conditioned
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Figure 5.1: Schematic of the hardware system

(filtered for noise, and scaled to the range of 0 – 5V) to the data acquisition input

range using a second order Butterworth low pass filter. These signals are sampled

simultaneously using a 16-bit parallel output, analog - to - digital converter ADS8364

made by Texas Instruments Inc.

General 16-bit ADCs have multiplexers at the input, which do individual sampling

causing delays if all inputs have to be taken at the same instant, hence the ADS8364

has been chosen as it is a six channel, simultaneous sampling, 16-bit parallel ADC. The

device incorporates an internal buffer that can be powered from the same 3.3V supply

as the DSP. All the six sensor voltages can be read simultaneously using this ADC

and they can be processed by the NPC to give us the required position. Simultaneous

sampling of input signals are performed to eliminate any phase lag which might exist

otherwise. All digitized signals from the ADC are interfaced to the NPC.

To relieve main processors from computational processing overhead during slow

speed serial I/O, a Field Programmable Gate Array (FPGA) based dedicated serial

port interface is used. The total number of chips is reduced to one and it is much

faster than the existing microcontroller schemes.
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In the system architecture, the FPGA chip is programmed to receive the GPS

data from GPS receiver, and generates a busy signal when accessing the internal

Dual Port RAM (DPRAM) of FPGA. This low-going busy signal interrupts the DSP

processor, and the processor fetches the data from internal DPRAM of the FPGA

chip. The DPRAM stores the position updates given by the GPS, in the proprietary

(SIRF sentences for the GPS receiver we are using) sentences format, every second.

Asynchronous communication is maintained between the GPS module and the NPC

card using DPRAM, thus saving the processor time during the transfer of data.

The INS computations and its integration with the GPS is carried out on the

Navigation Processor Card (NPC). The NPC comprises of a TMS320VC33 DSP

manufactured by Texas Instruments Inc. and its supporting hardware. This DSP

board gives us the freedom to download the software directly from the computer

using a printer port interface and communicate with other computer programs as

well. The TMS320VC33 is a floating point DSP with an instruction cycle time of

13ns or 150MHz and provides upto 75 MIPS, 150M FLOPS. The DSP has a standard

50 pin connector interface with external circuitry. It has 34K words (1 word = 32

bits) dual access SRAM, bootloader and onchip peripherals. It is inexpensive and

easily available. An inexpensive tool for the processor is available. The processor has

32 bit data bus and 24 bit address bus. The control signals for selecting peripheral

chips on the DSP board are generated using programmable array logic (PAL). The

DSP board has a DPRAM 7130 for parallel data transfer through standard 20-pin

connector. A standard 6-pin interface for serial I/O exists on the board and can be

configured as a general purpose I/O pins. It also has a standard-14 pin emulator

connector.

5.2 System Flow

The INS/GPS integration program has several subprograms and header files, along

with assembly coding for initialisation of DSP and its peripherals.
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An interrupt vector table is created with /INT0 and /INT1 defined as interrupts

from the GPS and INS acquisitions. Two timers, Timer0 and Timer1, are then

configured using the Timer Global Control registers and Timer Period registers in

the initialization routine. The interrupt /INT0 is received from the FPGA chip, when

the GPS update every second takes place, and is given the highest priority. The six

channels of the ADC (A0, A1, B0, B1, C0 and C1) are paired up two at a time. Hence,

the end of conversion (EOC) signal comes in 3 pulses from the ADC. Therefore, a

variable count is assigned a value 2 during initialization for counting the EOC signal

from the ADC. Variables to begin the INS computations, Start INS, and to check if

the GPS readings are available, GPS available, are set to low or 0. Timer0 generates

a clock of 5MHz for the ADC sampling and Timer1 generates interrupts at a frequency

of 100Hz. These timers are enabled by configuring the Timer Control registers.

On initialization, a software reset is given to the ADC chip by the program, which

is then configured to operate in CYCLE MODE. In this mode, the six channels of the

ADC are read in a fixed order every time an INS acquisition takes place. Timer0 is

run, thus providing a clock to the ADC continuously. Timer1 generated interrupts at

a rate of 100Hz for each INS time step. On every Timer1 overflow flag, the /HOLDx

signals (the ‘x’ in /HOLDx stands for each of the six channels of the ADC, for eg.

/HOLDA0) are made low and at this instant the ADC samples all the six channels

simultaneously. During this time the main program is waiting in an infinite loop or

IDLE mode. The respective Interrupt Service Routines (ISR) are enabled based on

the interrupts received.

• When the EOC of ADC (/INT1) occurs, the data of all six channels is stored.

Start INS is set to high or 1. The program then returns from the /INT1 ISR.

• When the reading from GPS by the FPGA (/INT0) occurs, the data is read

from the internal DPRAM within the FPGA, and GPS available is set to high

or 1. The program then returns from the /INT0 ISR.

When the Start INS and GPS available variables are set high, the INS and
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Kalman filter computations are performed in the main program loop, respectively.

Figures 5.2 - 5.4 [35] show flowcharts describing the flow of instructions in the initial-

ization, ISR and computation part of the program.

Figure 5.2: Flow of instructions : initialization and reading data
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Figure 5.3: Interrupt Service Routines (ISR)

Figure 5.4: Flow of instructions : computation and output

45



5.3 DSP Simulator

The C program for INS/GPS integration using Kalman filtering, has been tried and

tested on the simulator for the TMS320VC33 DSP series in a software simulator made

by Texas Instruments Inc. known as Code Composer Studio c3x4x. This software

simulates the actual DSP on the computer. With this simulator we can debug the

programs without the target hardware. Time critical code, as well as individual

portions of the program can be tested. The simulator uses the standard C or assembly

source debugger interface, allowing the user to debug the programs in C or in assembly

language or both.

Earlier, the integration code was written for a standard C compiler which would

take its inputs from files every 10ms for the INS and every second for the GPS. These

inputs were the accelerations and angular rates in standard decimal format, on which

sensor modelling was done. For the integration code to run on Code Composer Studio,

the voltages obtained after modelling the sensors, were converted to hexadecimal

format. These were then manipulated upon, as explained in section 3.1.3 on sensor

modelling, so as to account for the ADC modelling. The modified values (digitized

signals from the ADC) were converted back to accelerations and angular rates, using

the calibration values of the biases and scale factors, as required by the INS/GPS

integration programs. The values of accelerations and angular rates were generated

using the FDC program instead of using actual sensors on flying vehicle. For the GPS

data, the positions along the North, East and Down axes (in metres) were converted

to hexadecimal format, so as to match the data as would be given by a GPS in SIRF

sentences. These hexadecimal values were converted to latitude and longitude using

the formulae given in section 3.1.2. The data for the initial state of the system at

time t = 0, was hardcoded into the program.

The Code Composer Studio handles file inputs and outputs using a tool called

probe points, wherein each variable, to be read from or written to a file, has to be

assigned a probe point and its own input or output file, whichever applicable. These
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probe points are nothing but pointers which act as sensor readers. Here they read

from a file, on the actual hardware they will be directly getting voltages from the

sensors or reading stored values from the DPRAM.

Code Composer Studio converts the whole C program into highly efficient in-

structions in assembly language (a file in COFF format) which are then input to a

TMS320c3x assembler or linker. Cycle counting displays the number of clock cycles

in a single-step operation or in the run mode. To count the number of instruction

cycles the program takes, there is a tool called profile point. If we assign a profile

point to the beginning and end of the program and run it for a fixed number of read-

ings (i.e. a fixed number of times the inputs from the sensors are given), the profile

points help us clock the number of cycles taken by the program. Each instruction

in assembly language has a certain number of cycles assigned to it. Once the total

number of cycles is known, we can calculate the time taken by the program to run

each INS computation or each Kalman filtering computation.

The number of instruction cycles were calculated using profile points for both

the INS program and KF individually. The INS program was run for 50s or 5001

steps (each reading taken in steps of 0.01s) and the total number of instruction cycles

were calculated to be 224744224, which when divided by 5001 gave 44940 cycles per

INS computation. Since each cycle corresponds to 26ns, one INS computation on

an average took 1.17ms to run completely. One INS computation excludes the time

taken to read the inputs from the sensors and comprises of only the integration of

the inputs to give us the position. The maximum number of cycles taken by an

INS computation in the 5001 steps was 51475 and the minimum was 44375 which

correspond to a time of 1.34ms and 1.15ms, respectively. Considering the worst case

possible, we can safely say that an INS computation takes approximately 1.5ms. The

program was run for one Kalman filter computation and the number of instruction

cycles used were 2443314 which corresponded to a time of 6.33ms. One Kalman filter

computation includes the time taken to read the GPS values,the Kalman filtering and

the INS computation for that instant to finally give us the updated position. To these
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Table 5.1: Instruction cycles for the program

Computation No. of Cycles Time taken (26ns/cycle)

INS 44940 1.17ms

Kalman Filter 2443314 6.33ms

ADC reading – 1ms

DPRAM writing – 1ms

computation timings, we also need to add the time taken to read the sensor inputs

which is 1ms and to write the outputs to the DPRAM which is another 1ms.

If the DSP is run at its maximum speed of 150MHz, the cycle time per instruction

is 13ns. We plan to run the DSP at 75MHz which is why the cycle time per instruction

is 26ns. The memory consumed by the program was only 17K words. The full memory

of the DSP was not used. Hence no external RAM is required unlike if we use the

DSP TMS320VC31 which has only onboard memory of 1K word, and an external

memory chip needs to be attached to the board.

The INS program was run on Code Composer Studio for 50 seconds and the output

was matched with the output given by the INS program written using MATLAB. The

output from the Code Composer Studio matched with the MATLAB output upto 3-4

decimal places. The output from the MATLAB code has a better match with the

actual trajectory because MATLAB is a highly accurate professional software, and

its Runge Kutta function is much more accurate than the fourth order Runge Kutta

used in the C program.

The Kalman filter program was also run for 50 seconds with the GPS update being

given every second. The output was similar to the output of the Kalman program

written in C.

Although the Code Composer Studio is a very slow working software, it is the

number of cycles taken by the program which gives us a clear indication of the speed
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at which the program would run on the DSP.

5.4 Hardware Issues and Future Work

Once we have debugged and run the program on the Code Composer Studio simulator,

we need to run it on the target hardware using an emulator. An emulator is a powerful,

high speed software or kernel used for system-level integration and debugging on the

DSP. Each DSP series has its own set of emulators. Emulators are user-friendly and

support hardware development on the target processor. Access is provided to every

memory location and register of the target processor through a JTAG cable connector.

Emulators can be DOS based or Windows based. The program in COFF format is

yet to be run on the emulator.

The speed of the INS and Kalman filter computations have to be checked again

on the target hardware. Although the Code Composer Studio gives us an idealistic

count, it is always safer to test on the target hardware. The results of the program

need to be checked after running on the hardware for a long time so as to find out

what level of accuracy is achieved on the target hardware.

As of now the sensor board is not designed, and hence we are giving inputs di-

rectly from the computer. Once the sensors are finalised, the sensor modelling in the

program has to be adjusted according to the sensors being used. Calibration needs to

be done to calculate the biases and scale factors of the accelerometers and gyroscopes.

Hewitson et al [36] and Shin [30] give us methods to calibrate the sensors effectively.

The initial state data at time t = 0 is currently hardcoded into the program. We

have to design a way to input the initial state directly from the hardware.

The output position is written onto the DPRAM. This needs to be fed into a

computer or any other display interface.
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Chapter 6

Conclusions

The INS system was modelled as given by the specification sheets. A nine state

Kalman filter was designed and implemented using the perturbation theory model

for postion, velocity and attitude. The accuracy of the results obtained was better

than the accuracy given by the GPS and INS as individual systems. The accuracy

can be further improved if we increase the states of the filter and model for the scale

factors,biases and nonorthogonality of the sensors. The INS updates were taken every

10ms, GPS updates every 1s and the Kalman filter was executed every 0.5s. Results

were generated for possible GPS outages of 8s during which the Kalman filter relies on

the INS and the state prediction vector. Although the accuracy decreases during this

period, the system settles down once the GPS updates are available. Results were

also generated for possible introduction of Selective Availability in the GPS data.

Although the accuracy of the output was not as good as that acheived by regular

GPS data (without SA), but nevertheless it was better than the GPS values.

The program of integration of the INS and GPS using Kalman filtering was run

on the DSP simulator software and the computation time was well within the require-

ments of 10ms.
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Appendix A

The equations that have to be integrated for the INS to give the position of the

aircraft in term of latitude, longitude and height are reprinted below.

ė0 = −1

2
(e1p+ e2q + e3r) (A.1)

ė1 =
1

2
(e0p+ e2r − e3q) (A.2)

ė2 =
1

2
(e0q + e3p− e1r) (A.3)

ė3 =
1

2
(e0r + e1q − e2p) (A.4)

with the four Euler parameters satisfying the following equation at all points of time.

e0
2 + e1

2 + e2
2 + e3

2 = 1 (A.5)

Euler angles can hence be calculated as shown below :

θ = sin−1[−2(e1e3 − e0e2)] (A.6)

φ = cos−1

[

e0
2 − e1

2 − e2
2 + e3

2

√

1 − 4(e1e3 − e0e2)2

]

sign[2(e2e3 + e0e1)] (A.7)

ψ = cos−1

[

e0
2 + e1

2 − e2
2 − e3

2

√

1 − 4(e1e3 − e0e2)2

]

sign[2(e1e2 + e0e3)] (A.8)

The angular rate of rotation of the earth in the North-East-Down frame of reference

is given below :

Ω =











Ω cosλ

0

−Ω sinλ











(A.9)
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ω
′ =











µ̇ cos λ

−λ̇

−µ̇ sin λ











(A.10)

The measured angular rates (denoted with subscript m) from the gyroscopes then help

calculate the actual angular rates in the body frame using the following equation.










p

q

r











=











p

q

r











m

− DCM
[

Ω + ω
′

]

(A.11)

DCM =











cos θ cosψ cos θ sinψ − sin θ

sin θ sin φ cosψ − sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ sin φ cos θ

sin θ cosφ cosψ + sinψ sinφ sinφ sin θ cos φ− cosψ sin θ cosφ cos θ











(A.12)

From the measured accelerations (aX , aY , aZ) and a given gravity model for g de-

pending on position coordinates we calculate the velocities.

U̇ = aX + V r −Wq + g sin θ (A.13)

V̇ = aY − Ur +Wp− g cos θ sin φ (A.14)

Ẇ = aZ + Uq − V p− g cos θ cosφ (A.15)










Ẋ

Ẏ

Ż











=











VN

VE

VD











= DCMT











U

V

W











(A.16)

Ẋ = VN (A.17)

Ẏ = VE (A.18)

Ż = VD (A.19)

We can then calculate the latitude (λ), longitude (µ) and height (H) using the fol-

lowing equations.

λ̇ =
VN

Re

(A.20)

µ̇ =
VE

Re cosλ
(A.21)

Ḣ = −VD (A.22)
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