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ABSTRA CT

Inertial navigation blendedwith other navigation aids like GPS, has gained sig-

ni�cance due to enhancednavigation and inertial referenceperformance. The INS,

individually can calculate the position of the aircraft without any help from the out-

sideworld. However, a largenumber of errorsare introducedby sensorsleadingto an

unacceptabledrift in the output. Hencea GPSis usedto aid the INS, usinga Kalman

�lter which helps in estimating the errors in the INS and thus updating position to

improved accuracy.

The simulation of the integration of the INS and GPS using Kalman �ltering has

beencompletedusingMATLAB and C. This hasbeentestedon the simulator for the

target hardware. The details have beenexplainedin the report.
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Chapter 1

In tro duction

For automatic machines,be it robots, aircraft or other autonomousvehicles,naviga-

tion is of utmost importance. Various systemsare usedin navigation of aircraft, viz.

inertial navigation systems(INS), global positioning systems(GPS), air-data dead

reckoning systems,radio navigation systems,Doppler headingreferencesystems,to

name a few. Our interest lies in integrating both the INS and the GPS to provide

the best possibleestimate of the aircraft position in terms of the latitude, longitude

and height above the surfaceof the earth.

The INS givesus the position, velocity and attitude of the aircraft but it is inun-

dated with errors due to the fact that any small bias error can grow the error with

time. Hence,an update or position �x is taken from the GPS and using a Kalman

�lter we can estimate the errors in both the INS and the GPS thus giving the usera

better position information.

Applications are not limited to aircraft alone. Although theseintegrated systems

�nd extensive usagein airborne vehicles,they have alsobeenusedin the navigation

of cars,shipsand satellites.

There are considerableadvantagesin developing this kind of a navigation system

as compared to the onesused earlier in terms of compactnessand speed. Micro-
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gyroscopesand GPS chips canbe integrated on a small board and cane�ectively give

the position of the vehicleconcerned.With the advent of MEMS technology, all this

can be doneat extremely high levels of accuracyand at lower costs.

Our aim is to develop the GPS-INS integrated system so that it can be imple-

mented on realtime hardware likea microcontroller or a digital signalprocessor.Even

though high accuracysensorslike gyroscopesand accelerometersare available, their

costs are on the higher side. Usageof low cost and low accuracysensorsmay �nd

application wherehigh accuracyis not required. Initially the simulation of the whole

navigation would be done on a computer, where given the initial state of the air-

craft and regular updates from the sensorsand the GPS, the program would return

the estimated position of the aircraft. Eventually this simulated model would be

implemented on realtime hardware.

The next chapter describes in brief someof the INS/GPS systemswhich have

been integrated and implemented on hardware. Chapter 3 givesan overview of the

working of each of the subsystems,i.e. the INS and the GPSfollowed by a theoretical

explanation of Kalman �ltering in general. Chapter 4 describes how the simulation

hasbeendone,viz. the INS programming,sensormodelling, GPS modelling and the

Kalman �lter modelling. In this chapter we alsoseewhy the Kalman �ltered output

is better than the output of the individual subsystems.The report concludeswith

the chapter discussingthe hardware used to run the program as well as the issues

associated with the working of the whole system.
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Chapter 2

Literature Surv ey

Several GPS-INS integration techniqueshave beenimplemented. Someof them are

described herebrie
y .

Schmidt [1] describes in detail the computations for a gimballed INS and the

strapdown INS. The 9 state Kalman �lter which is discussedby him usesa barometric

altimeter to correct for the height. Bar-Itzhack et al [2] describesa control theoretical

approach to INS/GPS integration using Kalman �ltering in his paper. The psi-angle

error model explained has been used extensively in many models of the INS/GPS

Kalman �lter and alsohasbeenusedin this project. Grewal et al [3, 4] have discussed

in their books the working of the INS, GPS and Kalman �ltering in detail and have

given a complicatedmodel of a possibleKalman �lter with 54 states.

Wolf et al [5] useSystron Donner's MotionPak inertial measurement unit (IMU)

and a Trimble AdvancedNavigation Sensor(TANS) Vector receiver system(as the

GPS component), which is a multi-antenna, attitude determination and position lo-

cation system. They have developed a real-time navigation software to calculate

position, velocity and attitude from the outputs of the MotionPak gyroscopes and

accelerometers.Besidesgiving position and velocity updates, TANS also givesatti-

tude measurement data. A Kalman �lter with 27 states has been implemented by

them. A Packard Bell 486computer was usedto carry out the computations.

3



Grejner-Brzezinska et al [6] have tested the feasibility of attitude estimation im-

provement by using high accuracy de
ection of vertical (DOV) information in the

integrated GPS/INS navigation system. The estimability of attitude components im-

provesby adding partially compensatedgravit y information. A fully digital Airb orne

Integrated Mapping System(AIMS) hasbeendesignedand the integrated INS/GPS

forms an integral part of this AIMS. A dual frequencydi�erential GPS (DGPS) and

the Litton LN100 IMU are tightly integrated. IMU data was updated at 256Hz. A

centralized 21 state Kalman �lter wasusedto processthe GPS L1/L2 signalsaswell

as the errors from the INS. Accuracy of order of 10cmwas achieved.

Srikumar and Deori [7] haveusedan airdata baseddeadreckoning systemto calcu-

late position of their MAV. Navigation accuracyhasbeenimproved by usingupdates

from a GPS receiver as well as a ground-basedtracking system. A Pentium 90MHz

personalcomputer has beenused to control navigation and many other featuresof

the aircraft.

Randle and Horton [8] describe in their works the integration of GPS/INS using

a low cost IMU consistingof micro-machined sensorsand on-board calibration. Sim-

ulations have beendone for both 
igh t and automotive navigation. With complete

lossof GPSsignals,position accuracyis shown to be lessthan 10mafter 30s. Kalman

�lter has23 statesand a DGPS was simulated to give measurement updates.

Navigation for reusablelaunch vehicleshas beenstudied by Gaylor et al [9]. A

number of navigation sensorshave beenstudied and the GPS/INS integrated system

was settled for. Error modelsof INS and GPS operating in the vicinit y of the Inter-

national SpaceStation have beendeveloped. E�ects of signalblockageand multipath

errorsof the GPS have beenmodelled. An extendedKalman �lter with 18 stateswas

developed.

Brown and Sullivan [10] have described test results for a systemthat usesan im-

proved kinematic alignment algorithm suite providing high quality navigation solu-

tion using direct carrier-phaseand pseudo-rangeGPS measurements, tightly coupled
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with measurements from a low cost IMU system. A 32 state Kalman �lter has been

implemented using InterNav software madeby NavsysCorporation.

Moon et al [11] �rst processthe GPS values before sending it to their 9 state

Kalman �lter. Honeywell's HG1700IMU has beenusedalong with a Motorola UT

Oncore GPS, which can track 8 GPS satellites simultaneously. Salychev et al [12]

useMotionPak IMU and integrate it with GPS (GPS - GLONASS) and DGPS infor-

mation, to provide navigation capability to bridge GPS outagesfor tens of seconds.

Airb orne and ground tests have been conducted and robustnessof the system has

beenstudied. IMU data was recordedat 46Hz.

A 21 state �lter using tightly coupled integration scheme was implemented by

Wang et al [13] and two digital signal processorswere usedto carry out the compu-

tations. A sensitivity performancehasbeenanalysedin their research paper.

Kwon [14] has studied airborne gravimetry and comparedit to ground measure-

ment of gravit y. The combination of GPS/INS is known to show very good perfor-

mancesfor recovering the gravit y signal. A new algorithm using accelerationup-

dates instead of conventional position or velocity updates has beendeveloped. It is

computationally proven to be lessexpensive sincenavigation equationsneednot be

integrated. Real 
igh t data hasbeentested upon the systemdesginedby Kwon and

the simulations have beendiscussedin his works in detail. A comparative study of

the Kalman �lter using traditional approach and the new approach hasbeendone.

Ronnback [15] hastestedhis INS/GPS navigation �lter written in C++ on an air

vehicle. A redundant 4 axesIMU calledTetrad hasbeenused. A 9 state Kalman �lter

was implemented with measurements of position and velocity from the GPS. Gautier

[16] has designedGPS INS generalizedevaluation tool (GIGET) which aids in the

selectionof sensorcombinations for any generalapplication or set of requirements.

It includes a unique �v e antenna, forty channel GPS receiver providing attitude,

position and timing. Honeywell's HG1700tactical gradeIMU is integrated with this

GPSusinga 21state extendedKalman �lter and testedon their homemadeDragon
y
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unmannedair vehicle.

In his work, Mayhew [17] proposesseveral methods for improving the position es-

timation capabilitiesof a systemby incorporating other sensorand data technologies,

including Kalman �ltered intertial navigational systems,rule-basedand fuzzy-based

sensorfusion techniques,and a unique map-matching algorithm. Ground testing of

the systemhasbeendone. Deadreckoning sensorsare usedto collect odometry data.

A Pentium 133MHzcomputerwasusedto carry out all the computationsand control

handling of the aircraft. The 9 state Kalman �lter wasrun every time a measurement

update from the INS took place.

Moore and Qi [18] have implemented a direct Kalman �ltering technique to inte-

grate their GPSand INS systems,wherethey usetwo stageGPS�ltering to preprocess

the GPS data before the Kalman �lter can use it. Their eight state direct Kalman

�lter usesthe position and velocity as its state vector. Shanget al [19] usetwo GPS

receivers to not only estimatethe position but alsothe azimuth alignment. They use

a PC/104 microcomputer to carry out their computations. They have carried out a

tightly coupledimplementation of the Kalman �lter.

Caoet al [20]have implemented a 15state Kalman �lter successfullyusingMEMS

basedsensorsfor intelligent transport systems. They have used a strapdown INS

system. Panzieri et al [21] have implemented a 5 state extendedKalman �lter to

manouever a robot's movements. They usea GPS becausethe usageof the robot is

outdoors.

Dorobantu and Zebhauser[22] have implemented an extendedKalman �lter of

�v e statesfor a 2-D caseas they are using it on a land vehicle. They usea DGPS to

get measurement updatesevery 1sand have discussedresults when there are regular

GPS outages.
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Chapter 3

INS,GPS, Kalman �ltering

Today's trend in navigation seesthe rise of integrated navigation systems,wherethe

components (sensors)that are usually integrated are the Inertial Navigation Systems

(INS) and the Global Positioning System(GPS). The integration of two subsystems

provides more accuracythan that of individual subsystems.

3.1 Inertial Navigation Systems

Figure 3.1: Orientation of axes

The INS consistsof 3-axis gyroscopes which give the system computer the roll,
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pitch and yaw rates about the body axes as shown in �gure 3.1 [23]. It also has

3-axis accelerometerswhich give the accelerationsalong the three body axes. There

are two basic inertial mechanisms which are used to derive the Euler anglesfrom

the rate gyros, viz. stable platform and strap-down INS. We would be concerned

with the strap-down INS wherethe gyros and accelerometersare `strapped-down' to

the aircraft body frame. The accelerationvalues from the accelerometersare then

correctedfor rotation of the earth and gravit y to give the velocity and position of the

aircraft.

3.1.1 Equations of Motion

The orientation of an aircraft with respect to a �xed inertial frame of axesis de�ned

by three Euler angles. The aircraft is imagined to be oriented parallel to the �xed

referenceframe of axes. A seriesof rotations bring it to the orientation about axes

OX, OY and OZ, as shown in �gure 3.2 [23]:

1. clockwise rotation about the yaw axis, through the yaw (or heading) angle  ,

followed by

2. a clockwise rotation about the pitch axis, through the pitch angle � , followed

by

3. a clockwise rotation about the roll axis, through the bank angle � .

The relationship between the angular rates of roll, pitch and yaw, p;q; r (measured

by the body mounted gyros), the Euler angles, ; � ; � and their rates, is given below.
2

6
6
6
4

_�

_�

_ 

3

7
7
7
5

=

2

6
6
6
4

1 sin� tan � cos� tan �

0 cos� � sin�

0 sin� sec� cos� sec�

3

7
7
7
5

2

6
6
6
4

p

q

r

3

7
7
7
5

(3.1)

By integration of the above equationswe can derive the Euler anglesusing initial

conditions of a known attitude at a given time. But, for pitch anglesaround � 90� ,
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Figure 3.2: Euler Angles

the error becomesunbounded as tan � tends to in�nit y. Quaternion algebra comes

to the rescuehere. We use four parameters,called the Euler parameters,that are

related to the Euler anglesas follows [24].

If e0; e1; e2; e3 were the four parametersthen in terms of angular rates, we have

_e0 = �
1
2

(e1p + e2q+ e3r ) (3.2)

_e1 =
1
2

(e0p + e2r � e3q) (3.3)

_e2 =
1
2

(e0q+ e3p � e1r ) (3.4)

_e3 =
1
2

(e0r + e1q � e2p) (3.5)

with the parameterssatisfying the following equation at all points of time.

e0
2 + e1

2 + e2
2 + e3

2 = 1 (3.6)

The above equationscan be usedto generatethe time history of the four parameters

e0; e1; e2; and e3. The initial valuesof the Euler anglesare given which are usedto
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calculate the initial valuesof the four parametersusing the following equations.

e0 = cos
 
2

cos
�
2

cos
�
2

+ sin
 
2

sin
�
2

sin
�
2

(3.7)

e1 = cos
 
2

cos
�
2

sin
�
2

� sin
 
2

sin
�
2

cos
�
2

(3.8)

e2 = cos
 
2

sin
�
2

cos
�
2

+ sin
 
2

cos
�
2

sin
�
2

(3.9)

e3 = � cos
 
2

sin
�
2

sin
�
2

+ sin
 
2

cos
�
2

cos
�
2

(3.10)

Once we have calculated the time history of the four parameters,we can calculate

the Euler anglesusing the following equations.

� = sin� 1[� 2(e1e3 � e0e2)] (3.11)

� = cos� 1

�
e0

2 � e1
2 � e2

2 + e3
2

p
1 � 4(e1e3 � e0e2)2

�
sign[2(e2e3 + e0e1)] (3.12)

 = cos� 1

�
e0

2 + e1
2 � e2

2 � e3
2

p
1 � 4(e1e3 � e0e2)2

�
sign[2(e1e2 + e0e3)] (3.13)

We now have with us the attitude of the aircraft. To calculate the position we use

the accelerationsgiven by the accelerometers.

The accelerations(ax , ay and az) of the aircraft alongthe three body axes,asread

by the accelerometers,are given by the equations3.14 - 3.16. U, V , W and p, q, r

are all available as states. If the accelerationdue to gravit y (g) model is supplied as

a function of location around the earth, then _U, _V and _W can be calculated.

_U = aX + Vr � Wq+ gsin� (3.14)

_V = aY � Ur + Wp � gcos� sin� (3.15)

_W = aZ + Uq � Vp � gcos� cos� (3.16)

The earth is rotating in spaceat a rate 
 (15� per hour) around an axis South to

North as shown in �gure 3.3.


 =

2

6
6
6
4


 cos�

0

� 
 sin�

3

7
7
7
5

(3.17)
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The motion of the vehicle at a constant height above the ground will induce an

additional rotation given by

! 0 =

2

6
6
6
4

_� cos�

� _�

� _� sin�

3

7
7
7
5

(3.18)

The measuredangular ratesinclude 
 and ! 0, wehave the actual angular ratesgiven

Figure 3.3: Local earth frame or Navigation frame

by 2

6
6
6
4

p

q

r

3

7
7
7
5

=

2

6
6
6
4

p

q

r

3

7
7
7
5

m

� DCM
h


 + ! 0
i

(3.19)

where DCM is the the direction cosinematrix or the transformation matrix, from

the local earth or navigation frame to the body frame, given by equation 3.20, _� is
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the rate of changeof longitude and _� is the rate of changeof latitude. .

DCM =

2

6
6
6
4

cos� cos cos� sin � sin�

sin� sin� cos � sin cos� sin sin� sin� + cos cos� sin� cos�

sin� cos� cos + sin sin� sin� sin� cos� � cos sin� cos� cos�

3

7
7
7
5

(3.20)

_U, _V and _W are integrated to calculate the velocity components (U, V and W),

which are then transformedusing the direction cosinematrix (equation 3.20) to give

velocity along North (VN ), velocity along East (VE ) and downward velocity (VD ) in

the navigation frame or local earth frame, as shown in �gure 3.3.
2

6
6
6
4

_X

_Y

_Z

3

7
7
7
5

=

2

6
6
6
4

VN

VE

VD

3

7
7
7
5

= DCM T

2

6
6
6
4

U

V

W

3

7
7
7
5

(3.21)

VN ; VE and VD are then integrated to give distancesmoved along the navigation

axes (X ; Y; Z ) on the surface of the earth. Let �; � and H denote the latitude,

longitude and height of the aircraft at any instant, then rate of changeof latitude

[23, 25] is given by

_� =
VN

Re
(3.22)

and rate of changeof longitude is given by

_� =
VE

Re cos�
(3.23)

whereRe is the radius of the earth. The rate of changeof altitude of the aircraft is

given by

_H = � VD (3.24)

The position of the aircraft in terms of latitude, longitude and altitude can be

thus calculatedusing equations3.22,3.23and 3.24.
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3.1.2 Errors in the INS

Most INS errors are attributed to the inertial sensors(instrument errors). These

are the residual errors exhibited by the installed gyros and accelerometersfollowing

calibration of the INS. The dominant error sourcesare shown in table 3.1[6, 26].

Table 3.1: Sensorgeneratederrors in the INS

A lignment errors roll, pitch and headingerrors

Accelerometer bias or o�set a constant o�set in the accelerometeroutput

that changesrandomly after each turn-on.

Accelerometer scale factor error results in an accelerationerror proportional to

sensedacceleration.

Nonortho gonality of gyros the axesof accelerometerand gyro

and accelerometers uncertainty and misalignment.

Gyr o drift or bias a constant gyro output without angular

(due to temperature changes) rate presence.

Gyr o scale factor error results in an angular rate error

proportional to the sensedangular rate

Random noise random noisein measurement

Errors in the accelerationsand angular rates lead to steadily growing errors in

position and velocity components of the aircraft, due to integration. Theseare called

navigation errors and there are nine of them { three position errors, three velocity

errors, two attitude errors and one headingerror. If an unaided INS is used, these

errors grow with time. It is for this reasonthat the INS is usually aided with either

GPS, Doppler headingsensoror air-data deadreckoning systems.Gravit y model can

also causesomeerrors. The accelerationdue to gravit y varies from place to place

along the earth and alsowith height. Theseerrors have to be modelled accordingly.

Inertial sensorsfor strapdown systemsexperiencemuch higher rotation as com-

pared to their gimballed counterparts. Rotation introduceserror mechanisms that
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require attitude rate-dependent error compensation.

3.2 Global Positioning System

3.2.1 In tro duction

GPS usesa one-way ranging technique from the GPS satellites that are also broad-

casting their estimated positions. Signalsfrom four satellites are usedwith the user

generatedreplica signal and the relative phaseis measured.Using triangulation the

location of the receiver is �xed. Four unknowns can be determined using the four

satellitesand appropriate geometry: latitude, longitude, altitude and a correction to

the user'sclock. The GPS receiver coupledwith the receiver computer returns eleva-

tion anglebetweenthe userandsatellite, azimuth anglebetweenthe userandsatellite,

measuredclockwise positive from the true north, geodetic latitude and longitude of

the user.

The GPS ranging signal is broadcast at two frequencies: a primary signal at

1575.42MHz (L 1) and a secondarybroadcast at 1227.6MHz (L 2). Civilians use

L1 frequencywhich has two modulations, viz. C/A or Clear Acquisition (or Coarse

Acquistion) Code and P or Preciseor Protected Code. C/A is unencrypted signal

broadcastat a higher bandwidth and is available only on L 1. P code is more precise

becauseit is broadcastat a higher bandwidth and is restricted for military use. The

military operators can degradethe accuracyof the C/A code intentionally and this

is known as Selective Availabilit y. Ranging errors of the order of 100m can exist

with Selective Availabilit y. There are six major causesof ranging errors : satellite

ephemeris,satellite clock, ionosphericgroup delay, troposphericgroup delay, multi-

path and receiver measurement errors, including software.

The primary role of GPSis to provide highly accurateposition and velocity world-

wide, basedon range and range-rate measurements. GPS can be implemented in

navigation as a �xing aid by being a part of an integrated navigation system, for

14



exampleINS/GPS.

3.2.2 Errors in GPS

Ephemeriserrorsoccur whenthe GPSmessagedoesnot transmit the correct satellite

location and this a�ects the ranging accuracy. Thesetend to grow with time from the

last update from the control station. Satellite clock errorsa�ect both C/A and P code

usersand leadsto an error of 1-2mover 12hr updates[27]. Measurement noisea�ects

the position accuracy of GPS pseudorangeabsolute positioning by a few meters.

The propagation of theseerrors into the position solution can be characterizedby a

quantit y called Dilution of Precision (DOP) which expressesthe geometry between

the satellite and the receiver and is typically between1 and 100. If the DOP is greater

than 6, then the satellite geometry is not good. Ionosphericand troposphericdelays

are introduced due to the atmosphereand this leads to a phaselag in calculation

of the pseudorange.Thesecan be corrected with a dual-frequencyP-code receivers.

Multipath errors are causedby re
ected signalsentering the front end of the receiver

and masking the correlation peak. Thesee�ects tend to be more prominent due to

the presenceof re
ectiv e surfaces,where15m or more in ranging error can be found

in somecases.

3.3 Kalman Filtering

The Kalman Filter (KF) is a very e�ective stochastic estimator for a largenumber of

problems,be it in computer graphicsor in navigation. It is an optimal combination,

in terms of minimization of variance, between the prediction of parametersfrom a

previoustime instant and external observations at a present time instant.
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3.3.1 Discrete Kalman Filter

The KF addressesthe generalproblem of trying to estimate the state x 2 < n of a

discrete-time controlled processthat is governed by the linear stochastic di�erence

equation [3, 4, 28]

xk = Axk� 1 + Buk + wk� 1 (3.25)

with a measurement z 2 < m that is

zk = H xk + vk : (3.26)

The variableswk and vk represent the processand measurement noiserespectively.

They areassumedto beindependent of each other, white, andwith normal probability

distributions

p(w) � N (0; Q); (3.27)

p(v) � N (0; R): (3.28)

Q is the processnoisecovarianceand R is the measurement noisecovariance. Equa-

tion 3.25 is similar to the standard state di�erential equation

_x = Ax + Bu (3.29)

wherex is the state vector and u is the input or driving function, the only di�erence

being that equation 3.25 is a systemwhosestate vector is sampledfor discretetime

state, whereasequation 3.29 is sampledfor continuous time state.

The n� n matrix A in the di�erence equation3.25,relatesthe stateat the previous

time step k � 1 to the state at the current time step k, in the absenceof a driving

function or a processnoise. The n � 1 matrix B relates the optional control input

u 2 < n to the state x. The m � n matrix H in equation 3.26 relatesthe state x k to

the measurement zk .

An initial estimate of the processat somepoint tk is assumed,and this estimate

is basedon our knowledgeof the processprior to tk . Let this a priori estimate be

denotedby x̂ �
k , wherethe \hat" denotesestimate,and the \super minus" remindsus
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that this is the best estimate we have prior to assimilating the measurement at tk .

Assuming that the error covariance matrix associated with x̂ �
k is also known, then

the estimation error is de�ned as

ê�
k = xk � x̂ �

k ; (3.30)

and the associated covariancematrix as

P k
� = E[e�

k e� T
k ] = E[(xk � x̂ � )(xk � x̂ � )T ] (3.31)

Sincewe have assumeda prior estimate x̂ �
k , we usezk to improve the prior estimate,

by the following equation.

x̂k = x̂ �
k + K k(zk � H k x̂ �

k ) (3.32)

wherex̂k is the updatesestimateand K k is the blending factor or Kalman gain that

minimizes the a posteriori error covarianceequation 3.33.

P k = E[ekeT
k ] = E[(xk � x̂ )(xk � x̂ )T ] (3.33)

Substituting equation 3.26 into 3.32 and then substituting the resulting expression

into 3.33we get

P k = (I � K kH k)P �
k (3.34)

where the Kalman gain which minimizes the mean-squareestimation error is given

by

K k = P �
k H T

k (H kP �
k H T

k + R k)� 1: (3.35)

We then estimate the next step measurement x̂ �
k+1 , the error covariance P �

k+1 and

repeat the process.

x̂ �
k+1 = Ak x̂k + Bkuk (3.36)

P �
k+1 = AkP kAT

k + Qk (3.37)

Weignorethe contribution of w k becauseit is a zeromeanfunction and not correlated

with the earlier w 's.
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Figure 3.4: The Kalman �lter loop

3.3.2 Kalman �lter and navigation

KF is an extremely e�ective and versatile procedurefor combining noisy sensorout-

puts to estimatethe state of a systemwith uncertain dynamics. Noisy sensoroutputs

include outputs from the GPS and INS; state of the systemmay include position, ve-

locity, attitude and attitude rate of a vehicleor an aircraft; and uncertain dynamics

includesunpredictable disturbancesin the sensorparametersor disturbancescaused

by a human operator or a medium (like wind).

The KF is used to estimate the errors introduced into the unaided INS system

due to the gyros and accelerometersas discussedin table 3.1. These errors form

the state vector x̂k and the measuredvaluesof the state vector from the GPS forms

the measurement vector z. Once the errors are modelled, the KF loop, as shown in

�gure 3.4, is implemented after giving the initial estimatesof the state vector and its

covariance matrix at time t = 0. This is the GPS-aidedINS system con�guration,

and the errorsare either compensatedby the feedforward or the feedback mechanism

as shown in �gures 3.5 and 3.6.
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Figure 3.5: Feedforward aided INS

Figure 3.6: Feedback aided INS
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Chapter 4

Simulation

The simulation of the integration of INS andGPSusinga Kalman �lter hasbeendone.

Separateprograms have beenwritten for modelling the INS, creating the errors in

the sensorsand modelling the output of the GPS using both MATLAB and C.

4.1 Implemen tation

A program called Flight Dynamics and Controls (FDC) toolbox, when given the

initial conditions of the aircraft thrust and aerodynamics,gave asits output the time

history of the aircraft in the form of a state vector X , where

X =
h

� �  p q r ax ay az X Y Z VT � �
i T

(4.1)

- �; � ;  are the Euler anglesin radians,

- p;q; r arethe roll, pitch andyaw ratesfrom the gyroscopesin radiansper second,

- ax ; ay ; az are the accelerationsfrom the accelerometersin m/s2,

- X ; Y; Z are the distancesalongthe three axesin the navigation framein meters,

- VT ; � ; � are the velocity of the aircraft in m/s, the angle of attack in radians

and the sideslipangle in radians, respectively.
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The FDC program can generatethesevaluesat any time step as required. Typical

time stepsor update rates rangefrom 10ms- 100ms.

4.1.1 INS mo dule

The INS program now takes6 states from this time history, viz. p, q, r , ax , ay, az.

Theseact as if the program is reading directly from the gyros and accelerometers.

Then the programintegratesand calculatesthe four Euler parametersusingequations

3.2- 3.6. From theseEuler parameters,the Euler anglesarecalculatedusingequations

3.11 - 3.13. Now the accelerationsfrom the accelerometersare usedto calculate _U,

_V, _W given by equations3.14 - 3.16, which are then integrated to get the valuesof

U, V, W.

We now have the velocity components of the aircraft in the body frame. To

convert it to the navigation frame or local earth frame, we usethe DCM matrix, as

in equation 3.20, and calculate V T using equation 3.21. Thesevelocity components

are then integrated to get the position X , Y, Z alongthe three axesin the local earth

frame. The latitude, longitude and height can be calculated using equations3.22 -

3.24. All the integrations are carried out using fourth order Runge-Kutta methods.

The initial conditions for time t = 0 have to be given and they are calculated

using the valuesgeneratedby the FDC at t = 0. Equations 3.7 - 3.10 are used to

calculate the valuesof the four Euler parametersat t = 0 taking the valuesof � , � ,

 from the FDC state vector X . Similarly, the initial valuesof the velocities are also

calculatedusing the following equations[23],

U = VT cos� cos� (4.2)

V = VT sin� (4.3)

W = VT cos� sin� ; (4.4)

where the valuesof VT , � , � are taken from the FDC state vector X at time t = 0.

Finally, the initial valuesof X , Y, Z are also taken from their corresponding FDC
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counterparts.

4.1.2 GPS mo dule

The GPS gives the latitude, longitude and altitude of the current location of the

receiver. What our program does is that it converts the X , Y , Z given out by the

FDC into latitude, longitude and altitude aswould be given out by the GPS receiver.

The update rate is 1 second. The GPS program usesWGS-84 approximation in

which the earth is consideredasan ellipsewith a semi-major axis (equatorial radius)

of a = 6; 378; 137m, and a semi-minor axis (polar radius) of b = 6; 356; 752:3142m

[29].

It is necessaryto de�ne the distance corresponding to a 1� change in longitude

(Flon) and latitude (Flat ) for a speci�ed location (latitude and height or altitude).

The following equationsde�ne Flon and Flat for a speci�ed latitude � and height h.

Flon =
�

180�

�
a2

p
a2 cos2 � + b2 sin2 �

+ h
�

cos� (4.5)

Flat =
�

180�

�
a2b2

�
a2 cos2 � + b2 sin2 �

� 3
2

+ h
�

(4.6)

Hence,the latitude and longitude at the current location (� 2; � 2) can be calculated

from the latitude and longitude from the previous location (� 1; � 1) in the following

manner :

� 2 =
� X
Flat

+ � 1; (4.7)

� 2 =
� Y
Flon

+ � 1: (4.8)

where� X and � Y arethe changesin position alongNorth direction and East direction

on the earth, respectively. If we consider the earth as a sphere,Flon and Flat can

be replacedby just the radius of the earth and the latitude and longitude can be

calculated. However, to make the GPS modeling more authentic, we have considered

the earth as an ellipse.
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4.1.3 Sensor Mo delling

The accelerometersensesthe accelerationin terms of g and sendsit to the INS in

Volts by conversionusinga scalefactor. A certain o�set at zerog calledthe biasexists

by default. The scalefactor and the bias details are available from the speci�cation

sheetsof the accelerometers.Errors arisein the accelerationsensedbecausethe scale

factor and the bias are not �xed. They vary stochastically and they lie within a

certain rangewhich is speci�ed in the data sheetsof the accelerometers.Let C mV/ g

be the nominal scalefactor, c mV/ g be the possibledeviation from the nominal scale

factor, D be the voltage at 0 g o�set and d be the deviation from that o�set. If a0 is

the accelerationsensedby the accelerometerthen, the output from the accelerometer

in voltage units is given by

Accoutput = (C � c)a0 + (D � d) (4.9)

c and d are normally distributed random numbers with zeromean,and c=3 and d=3

as the standard deviations, respectively. d changesrandomly after each turn-on.

This voltage signal from the accelerometerpassesthrough the ADC. Hence,we

have to include the errors for the ADC as well in Accoutput . If we usea 16-bit ADC

with a rangeof 0 � 5000mV,we divide Accoutput with 5000
65536, round o� the result and

then multiply it by 5000
65536, thus incorporating the errors due to the ADC into the

accelerationmeasuredby the accelerometer.Once this is done, the Accoutput is the

digitized voltage output which hasto be converted back to accelerationin terms of g

which is doneusing the following equation,

a =
Accoutput � Dc

Cc
(4.10)

wherea is the accelerationvaluesent to the INS program,Cc andDc arethe calibrated

valuesof the scalefactor and bias, respectively. The gyroscope error modelling is also

donein a similar way accounting for the corresponding scalefactorsand o�set biases.

Theseerrors together lead to a drift, which grows with time, in the output (location)

given by the INS and it could be up to hundreds of metres. Table 4.1 gives a set
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of valuesgiven by the speci�cation sheetswhich were used in the simulation. The

errors due to temperature e�ects and due to the misalignment of accelerometersand

gyroscopeshave beenignored.

Table 4.1: Sensorspeci�cations usedin the simulation

Quan tit y Value Standard Deviation

Scalefactor of the accelerometer 250mV/ g � 25
3 mV/ g

Zero g O�set of the accelerometer 2500mV � 625
3 mV

Scalefactor of the gyroscope 1.11mV/ � /s � 10
3 %

Typical turn-on drift of the gyroscope 0.12 � /s {

Random noiseincorporated in the GPS { � 20 m

4.1.4 Kalman Filter Mo dule

The error dynamics model given in the works of Schmidt [1], Bar-Itzhack et al [2],

and Grewal [4] has beenusedfor the simulation. The error dynamicsequationsare

obtained when the nominal equationsare perturbed in the local level north-pointing

coordinate systemthat correspondsto the geographiclocation indicated by the INS.

The di�erential equations that describe the error behavior of the INS are divided

into equations describing the propagation of the translatory errors and equations

describingthe propagationof attitude errors. Translatory errors are the velocity and

position errors. The translatory errorsand the attitude errorsarenot coupledto each

other. The nine state INS/GPS integration Kalman �lter will then be built using the

error dynamicsequations. The perturbation of the position, velocity, attitude DCM,

and gravit y can be expressedas

r̂ n = r n + � r n (4.11)

v̂ n = v n + � v n (4.12)

Ĉn
b = (I � En )Cn

b (4.13)
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 n = gn + � gn (4.14)

where r n , v n and 
 n denote the position, velocity and gravit y vectors in the nav-

igational frame, respectively; Cn
b denotesthe attitude direction cosinematrix from

the navigational frame to the body frame and En is the skew symetric form of the

attitude errors (� n )

En = (� n � ) =

2

6
6
6
4

0 � � D � E

� D 0 � � N

� � E � N 0

3

7
7
7
5

(4.15)

and^and � denotecomputedvaluesand errors, respectively.

The linear position error dynamicscanbe obtainedby perturbing equations3.22-

3.24,which are the dynamicsequationsfor the geodetic positions. Sincethe position

dynamicsequationsarefunctions of position and velocity, the position error dynamics

equationsare obtained using partial derivatives[30]:

� r̂ n = Fr r � r n + Fr v � v n (4.16)

where

Fr r =

0

B
B
B
@

@_�
@�

@_�
@�

@_�
@h

@_�
@�

@_�
@�

@_�
@h

@_h
@�

@_h
@�

@_h
@h

1

C
C
C
A

=

0

B
B
B
@

0 0 � VN
(Re+ h)2

VE sin �
(Re+ h) cos2 � 0 � VE

(Re+ h)2 cos�

0 0 0

1

C
C
C
A

;

Fr v =

0

B
B
B
@

@_�
@VN

@_�
@VE

@_�
@VD

@_�
@VN

@_�
@VE

@_�
@VD

@_h
@VN

@_h
@VE

@_h
@VD

1

C
C
C
A

=

0

B
B
B
@

1
Re+ h 0 0

0 1
(Re+ h) cos� 0

0 0 � 1

1

C
C
C
A

and Re is the radius of the earth and is considereda constant.

The velocity dynamicsequation is expressedas

_̂v
n

= Ĉn
b f b � (2
 + ! 0) � v̂ n + 
 n (4.17)

wheref b is the accelerationof the aircraft in the body frame, 
 and ! 0 are given in

equations3.17 and 3.18. The gravitation vector in the navigation frame, gn , can be
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appromiatedby the normal gravit y vector
�

0 0 

� T

, and 
 varieswith altitude.

Assuminga sphericalearth model, we can write


 = 
 0

 
Re

Re + h

! 2

; (4.18)

where 
 0 is the normal gravit y at h = 0. On perturbing equation 4.17 and using

equations3.17, 3.18 and 4.18, we can obtain the velocity error dynamics equation

[1, 2, 30] as follows :

� _v n = Fvr � r n + Fvv � v n + (f n � )� n + Cn
b � f b (4.19)

where

Fvr =

0

B
B
B
@

� 2VE 
 cos� � V 2
E

(Re+ h) cos2 � 0 � VN VD
(Re+ h)2 + V 2

E tan �
(Re+ h)2

2
( VN cos� � VD sin� ) + VE VN
(Re+ h) cos2 � 0 VE VD

(Re+ h)2 � VN VE tan �
(Re+ h)2

2VE 
 sin� 0 V 2
E + V 2

N
(Re+ h)2 � 2


(Re+ h)

1

C
C
C
A

;

Fvv =

0

B
B
B
@

VD
Re+ h � 2
 sin� � 2VE tan �

Re+ h
VN

Re+ h

2
 sin� + VE tan �
Re+ h

VD + VN tan �
Re+ h 2
 cos� + VE

Re+ h

� 2 VN
Re+ h � 2
 cos� � 2 VE

Re+ h 0

1

C
C
C
A

and � f b is the perturbation in the accelerationvector in the body frame.

The attitude error dynamicsequation [30] can be written as

_� n = Fer � r n + Fev� v n � (( 
 + ! 0)� )� n � Cn
b � ! b

ib (4.20)

where

Fer =

0

B
B
B
@

� 
 sin� 0 � VE
(Re+ h)2

0 0 VN
(Re+ h)2

� 
 cos� � VE
(Re+ h) cos2 � 0 VE tan �

(Re+ h)2

1

C
C
C
A

;

Fev =

0

B
B
B
@

0 1
Re+ h 0

� 1
Re+ h 0 0

0 � tan �
Re+ h 0

1

C
C
C
A
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and � ! b
ib is the perturbation in the angular rate vector betweenthe inertial frameand

the body frame.

A state spacemodel (equation 3.29) can be constructedby augmenting the equa-

tions 4.16,4.19and 4.20as follows :

_x = F x + Gu (4.21)

whereF is the dynamicsmatrix, x is the state vector, G is a designmatrix, u is the

forcing vector function [1, 2, 30]:

F =

0

B
B
B
@

Fr r Fr v 0

Fvr Fvv (f b� )

Fer Fev � (( 
 + ! 0)� )

1

C
C
C
A

x =

2

6
6
6
4

� r n

� v n

� n

3

7
7
7
5

G =

0

B
B
B
@

0 0

Cn
b 0

0 � Cn
b

1

C
C
C
A

u =

2

4
� f b

� ! b
ib

3

5

The elements of u are white noisewhosecovariancematrix is given by

E[u(t)u(t)T ] = Q(t)� (t � � ) (4.22)

where the operator � denotesthe Dirac delta function whoseunit is 1/time [30]. Q

is called the spectral density matrix and has the form

Q = diag
�

� 2
ax � 2

ay � 2
az � 2

! x � 2
! x � 2

! z

�
(4.23)

where � a and � ! are the standard deviations of the accelerometersand gyroscopes,

respectively.

We now transform equation 4.21to its discretetime form :

xk+1 = � kxk + wk (4.24)

where � k is the state transition matrix, and w k is the driven responseat tk+1 due

to the presenceof input white noise during time interval (tk ; tk+1 ) [28]. For the
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implementation of the INS, becausethe time interval � t = tk+1 � tk is very small, we

can numerically approximate the state transition matrix as

� k = exp(F � t) � I + F � t (4.25)

The covariancematrix associated with w k is

Qk = E[wkwT
k ] � � kGQGT � T

k � t (4.26)

If the norm of Qk is larger than the real one,the Kalman �lter trusts the measure-

ments more than the system,thus making the estimatesnoisy due to free passageof

measurement noise[30]. However, there is no time lag. If the norm of Qk is lessthan

one, the time lag exists. When the norm of Qk is much smaller than the real one,

the �lter diverges,which may result in numerical instabilities. Hence,for low cost

inertial systems,Qk must be selectedpessimistically so that the tra jectory follows

that of the GPS. The elements corresponding to � f z should be large enoughso that

they can account for the uncertainties in gravit y as well as sensorimperfection.

The observation equation 3.26 expressesthe vector measurement, zk , at time tk

as a linear combination of the state vector x k and a random measurement error, v k .

The processnoise,wk and the measurement noise,v k are uncorrelated, hencetheir

covarianceis 0. The covariancematrix for v k is given by

E[vkvT
k ] = Rk (4.27)

The Kalman �lter is then implemented usingequations3.32- 3.37. The position from

GPS is consideredas measurements. The formulation of the measurement equation

can be written as

zk = r n
I N S � r n

GP S =

0

B
B
B
@

� I N S � � GP S

� I N S � � GP S

hI N S � hGP S

1

C
C
C
A

Hk =
�

I 3� 3 03� 3 03� 3

�
(4.28)

Since� and � are in radiansand hencevery small, they causenumerical unstabil-

ities in calculating the Kalman gain K k . Hence,the �rst two rows are multiplied by
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(Re + h) and (Re + h) cos� , respectively [30]. The measurement equation now takes

the form :

zk =

0

B
B
B
@

(Re + h)(� I N S � � GP S)

(Re + h) cos� (� I N S � � GP S)

hI N S � hGP S

1

C
C
C
A

Hk =

0

B
B
B
@

(Re + h) 0 0

0 (Re + h) cos� 0 03� 3 03� 3

0 0 1

1

C
C
C
A

(4.29)

and the following measurement noisematrix hasbeenused

Rk = diag
�

� 2
� � 2

� � 2
h

�
(4.30)

which can be obtained from GPS processing. In our simulation, we have taken the

error sphereof the GPS to have a radius of 20m. Hence� � = � � = � h = 20m.

The initial estimation uncertainty standard deviations must be given to start a

Kalman �lter. If an inertial measurement unit is initialised in stationary mode, the

position uncertainty will be that of the GPS solution, the velocity uncertainty zero

and the attitude uncertainty will depend wholly on the accelerometerand gyroscope

biases[30]. If the biasescan be estimated, the attitude uncertainty can be reduced.

The estimatederrors are fed back to the mechanization (INS module) (see�gure

3.6) or fed forward to the output (�gure 3.5). In the feedforward method, the inertial

systemoperatesas if there was no aiding : it is unaware of the existenceof the �lter

or the external data. The disadvantage of this method is that the mechanization

can experienceunboundederror growth, which makesunboundederror observations

delivered to the Kalman �lter. This causesproblem to the linear �lter since only

small errors are allowed due to the linearization process. Therefore, the feedback

method is optimal for low cost INSs. The estimatedstate vector x k is usedto correct

for the position, velocity and attitude calculated by the INS, using equations4.11 -

4.13every time a measurement, zk , is taken, i.e. every 1 second.
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r n = r̂ n � � r n (4.31)

v n = v̂ n � � v n : (4.32)

The following characteristic holds for the �rst order attitude errors :

(I � En)� 1 = (I + En) (4.33)

Hence,equation 4.13can be manipulated to yield the DCM attitude feedback as

follows :

Cn
b = (I + En)Ĉn

b (4.34)

After feedback is done, the error state vector should be set to zero, becausethe

state vector is zero until the next measurements are made for a feedback nine-state

INS/GPS integration Kalman �lter. If the feedback is madeeverytime measurements

take place,the state prediction doesnot needto be implemented [30].

4.2 Results

In this sectionwe discussthe results obtained from the simulation of individual sub-

systems,i.e. the INS and GPS and the integrated system.

4.2.1 Individual subsystems

Due to mechanical errors existing in the accelerometersand gyroscopes, the INS,

individually, doesnot accurately give the position of the aircraft. As seenin �gures

4.1 - 4.3, the unaided INS (blue line) deviatesfrom the actual tra jectory (black line)

by a very large extent. This simulation has beendone by modelling the sensorsas

explained in section3.1.3. The updates from the gyroscopesand accelerometersare

taken every 10ms. The above mentioned �gures show us the typical output given
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by the GPS (red circles), with an update taken every second.A standard deviation

of 20m has beenassumedin modelling the GPS output. The GPS has a long term

accuracy and the INS has a short term accuracy, hencethe individual systemsby

themselvesare not enoughto give us a good and accuratemeasureof the location. If

Selective Availabilit y is introduced,the GPS output would have a standard deviation

of around 40-50m. Hence,we go for an integrated systemof the INS and GPS using

a Kalman �lter.
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Figure 4.1: Distancealong North calculatedby the unaided INS and GPS

Figure 4.2: Distancealong East calculatedby the unaided INS and GPS

Figure 4.3: Altitude calculatedby the unaided INS and GPS
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4.2.2 In tegrated system

A nine-state model Kalman �lter was implemented as described in section 3.1.4.

Figures 4.4 - 4.2.2, show the output of the simulation as well as the GPS output

simulated for a period of 200s.The standard deviation chosenfor the accelerometers

herewas 10mGal. The standard deviations of the accelerometerswas varied and we

have got two setsof outputs. As given in the works by Ronnback [15] and Shin [30],

the standard deviations of the accelerometerswere increasedto give an output with

a much better accuracyas seenin �gures 4.7 - 4.9. The standard deviations of the

accelerometerschosenwas 30mGal.

The update from the accelerometersand gyroscopes was taken every 0.01s,the

GPS update was taken every 1s and the Kalman �lter was run every 0.5s [17] to

achieve better accuracy. Every alternate 0.5s instant, when the GPS update is not

available, equation 3.32 is usedto predict the error state x̂k , using the most recent

GPS update as the measurement, i.e. the GPS update is taken constant for that

whole one second. This also comesin usewhen there are GPS outages. Whenever

the GPSupdate is taken, x̂ �
k is madezero,and whenever the GPSupdate is not taken

(every alternate 0.5sor when there are GPS outages),x̂ �
k is left as it is and updated

using the equations3.32- 3.36.

The graphs for attitude computed and correctedby the Kalman �lter are given

in �gures 4.10 - 4.12. We cannot expect the Kalman �lter to correct the attitude

given by the INS perfectly as attitude is not a part of the measurement vector. We

can only correct the attitude given by the INS using the attitude errors predicted by

the state matrix. This correctedattitude forms a part of the integration loop in the

whole system. The graphs4.10- 4.12correspond to the graphs4.7 - 4.9.

Figures4.13- 4.15show us the results from running the programwhenwe assume

a GPS outageof 8s, from the period t = 25sto t = 32s. For this time period of GPS

outage, the GPS valuesusedby the program remain the sameas the last measured

values,i.e. the valuesmeasuredat t = 24s. At t = 33s,the GPS starts readingagain,
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and new valuesare read by the program. During this time the Kalman �lter relies

totally on the INS and state predictions, and the accuracyis a�ected as we can see

from the graphs. But oncethe newGPS valuesare readby the program, the Kalman

�lter takesvery lesstime, of the order of a few seconds,to settle down towards the

actual tra jectory.

If Selective Availabilit y (SA) is introduced or exists in the GPS, the standard

deviation of the GPS position measuredis around 40-50m. Figures 4.16 - 4.18show

the output of the program, when SA was introduced with a standard deviation of

40m. The Kalman �lter does not know that SA has been introduced, and it still

usesthe standard deviation of 20m, as given by the speci�cation sheetsof the GPS

receiver, in the measurement noisecovariancematrix R k . SA hasbeenintroducedin

the GPS valuesfor the period of 200s. We can seethat due to introduction of SA,

the accuracyof the output hasdecreasedbut it still better than the GPS but not as

good aswhat it would be without SA. If while running the program for a longer time,

suddenly we introduce SA, even then the program will not waver from its regular

output, although the accuracywill decreasefor the time period in which SA hasbeen

introduced.
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Figure 4.4: Kalman �ltered output of distancealong North

Figure 4.5: Kalman �ltered output of distancealong East

Figure 4.6: Kalman �ltered output of Altitude
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Figure 4.7: Distancealong North calculatedwith higher varianceof accelerometers

Figure 4.8: Distancealong East calculatedwith higher varianceof accelerometers

Figure 4.9: Altitude calculatedwith higher varianceof accelerometers
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Figure 4.10: Euler anglePhi vs Time
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Figure 4.11: Euler angleTheta vs Time
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Figure 4.12: Euler anglePsi vs Time
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Figure 4.13: Distancealong North calculatedwith GPS outagebetween25sand 33s
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Figure 4.14: Distancealong East calculatedwith GPS outagebetween25sand 33s

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600
Altitude in metres vs Time in Seconds

Time in seconds

Al
titu

de
 in

 m
etr

es

Kalman filtered output
Actual trajectory
GPS output

Figure 4.15: Altitude calculatedwith GPS outagebetween25sand 33s
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Figure 4.16: Distancealong North calculatedwith Selective Availabilit y introduced
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Figure 4.17: Distancealong East calculatedwith Selective Availabilit y introduced
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Figure 4.18: Altitude calculatedwith Selective Availabilit y introduced
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Chapter 5

Hardw are Implemen tation

The present study is undertaken concurrently with a Masters project to designand

develop a hardware for implementing the INS/GPS integrated system[35]. The ob-

jective of this project included generatingrequirements for the other project and to

test the INS/GPS integrated system program on the hardware. The hardware has

beenspeci�cally designed[35] for a mini aerial vehicle(MAV). For the computations

of the INS and the Kalman Filter a digital signal processor(DSP) has beenusedin

the hardware.

5.1 Hardw are Description[35 ]

The systemto be used is compact,light and single supply operated. The schematic

of the whole systemis shown in �gure 5.1.

The systemcan be divided into two blocks :

� GPS and INS Data Acquisition (GIDAC) card

� Navigation ProcessorCard (NPC)

The analogsignalsfrom the accelerometersand gyroscopesare signal conditioned
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Figure 5.1: Schematic of the hardware system

(�ltered for noise,and scaledto the range of 0 { 5V) to the data acquisition input

range using a secondorder Butterworth low pass�lter. Thesesignalsare sampled

simultaneouslyusinga 16-bit parallel output, analog- to - digital converter ADS8364

madeby TexasInstruments Inc.

General16-bit ADCs havemultiplexers at the input, which do individual sampling

causingdelays if all inputs have to be taken at the sameinstant, hencethe ADS8364

hasbeenchosenasit is a six channel,simultaneoussampling,16-bit parallel ADC. The

deviceincorporatesan internal bu�er that canbepoweredfrom the same3.3V supply

as the DSP. All the six sensorvoltagescan be read simultaneously using this ADC

and they canbe processedby the NPC to give us the requiredposition. Simultaneous

samplingof input signalsare performedto eliminate any phaselag which might exist

otherwise. All digitized signalsfrom the ADC are interfacedto the NPC.

To relieve main processorsfrom computational processingoverheadduring slow

speedserial I/O, a Field ProgrammableGate Array (FPGA) baseddedicatedserial

port interface is used. The total number of chips is reducedto one and it is much

faster than the existing microcontroller schemes.
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In the system architecture, the FPGA chip is programmedto receive the GPS

data from GPS receiver, and generatesa busy signal when accessingthe internal

Dual Port RAM (DPRAM) of FPGA. This low-goingbusy signal interrupts the DSP

processor,and the processorfetches the data from internal DPRAM of the FPGA

chip. The DPRAM storesthe position updatesgiven by the GPS, in the proprietary

(SIRF sentencesfor the GPS receiver we are using) sentencesformat, every second.

Asynchronouscommunication is maintained betweenthe GPS module and the NPC

card using DPRAM, thus saving the processortime during the transfer of data.

The INS computations and its integration with the GPS is carried out on the

Navigation ProcessorCard (NPC). The NPC comprisesof a TMS320VC33 DSP

manufactured by Texas Instruments Inc. and its supporting hardware. This DSP

board gives us the freedom to download the software directly from the computer

using a printer port interface and communicate with other computer programs as

well. The TMS320VC33 is a 
oating point DSP with an instruction cycle time of

13nsor 150MHzand providesupto 75 MIPS, 150MFLOPS. The DSP hasa standard

50 pin connector interface with external circuitry. It has 34K words (1 word = 32

bits) dual accessSRAM, bootloader and onchip peripherals. It is inexpensive and

easilyavailable. An inexpensive tool for the processoris available. The processorhas

32 bit data bus and 24 bit addressbus. The control signalsfor selectingperipheral

chips on the DSP board are generatedusing programmablearray logic (PAL). The

DSP board has a DPRAM 7130 for parallel data transfer through standard 20-pin

connector. A standard 6-pin interface for serial I/O exists on the board and can be

con�gured as a generalpurpose I/O pins. It also has a standard-14 pin emulator

connector.

5.2 System Flo w

The INS/GPS integration program has several subprogramsand header�les, along

with assembly coding for initialisation of DSP and its peripherals.
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An interrupt vector table is createdwith /INT0 and /INT1 de�ned as interrupts

from the GPS and INS acquisitions. Two timers, Timer0 and Timer1, are then

con�gured using the Timer Global Control registersand Timer Period registers in

the initialization routine. The interrupt /INT0 is received from the FPGA chip, when

the GPS update every secondtakesplace,and is given the highest priorit y. The six

channelsof the ADC (A0, A1, B0, B1, C0 and C1) arepaired up two at a time. Hence,

the end of conversion (EOC) signal comesin 3 pulsesfrom the ADC. Therefore, a

variable count is assigneda value 2 during initialization for counting the EOC signal

from the ADC. Variablesto begin the INS computations,Start INS, and to check if

the GPSreadingsareavailable, GPSavailable , areset to low or 0. Timer0 generates

a clock of 5MHz for the ADC samplingandTimer1 generatesinterrupts at a frequency

of 100Hz. Thesetimers are enabledby con�guring the Timer Control registers.

On initialization, a software resetis given to the ADC chip by the program, which

is then con�gured to operate in CYCLE MODE. In this mode, the six channelsof the

ADC are read in a �xed order every time an INS acquisition takesplace. Timer0 is

run, thus providing a clock to the ADC continuously. Timer1 generatedinterrupts at

a rate of 100Hzfor each INS time step. On every Timer1 over
ow 
ag, the /HOLDx

signals (the `x' in /HOLDxstands for each of the six channels of the ADC, for eg.

/HOLDA0) are made low and at this instant the ADC samplesall the six channels

simultaneously. During this time the main program is waiting in an in�nite loop or

IDLE mode. The respective Interrupt ServiceRoutines (ISR) are enabledbasedon

the interrupts received.

� When the EOC of ADC (/INT1) occurs, the data of all six channelsis stored.

Start INS is set to high or 1. The program then returns from the /INT1 ISR.

� When the reading from GPS by the FPGA (/INT0) occurs, the data is read

from the internal DPRAM within the FPGA, and GPSavailable is set to high

or 1. The program then returns from the /INT0 ISR.

When the Start INS and GPSavailable variables are set high, the INS and
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Kalman �lter computations are performed in the main program loop, respectively.

Figures5.2 - 5.4 [35] show 
o wcharts describingthe 
o w of instructions in the initial-

ization, ISR and computation part of the program.

Figure 5.2: Flow of instructions : initialization and readingdata
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Figure 5.3: Interrupt ServiceRoutines (ISR)

Figure 5.4: Flow of instructions : computation and output
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5.3 DSP Simulator

The C program for INS/GPS integration using Kalman �ltering, has beentried and

testedon the simulator for the TMS320VC33 DSPseriesin a softwaresimulator made

by Texas Instruments Inc. known as Code Composer Studio c3x4x. This software

simulates the actual DSP on the computer. With this simulator we can debug the

programs without the target hardware. Time critical code, as well as individual

portions of the programcanbe tested. The simulator usesthe standardC or assembly

sourcedebuggerinterface,allowing the userto debugthe programsin C or in assembly

languageor both.

Earlier, the integration code was written for a standard C compiler which would

take its inputs from �les every 10msfor the INS and every secondfor the GPS.These

inputs werethe accelerationsand angular rates in standard decimalformat, on which

sensormodelling wasdone. For the integration codeto run on CodeComposerStudio,

the voltages obtained after modelling the sensors,were converted to hexadecimal

format. Thesewere then manipulated upon, as explained in section3.1.3 on sensor

modelling, so as to account for the ADC modelling. The modi�ed values(digitized

signalsfrom the ADC) wereconverted back to accelerationsand angular rates, using

the calibration values of the biasesand scalefactors, as required by the INS/GPS

integration programs. The valuesof accelerationsand angular rates were generated

usingthe FDC programinsteadof usingactual sensorson 
ying vehicle. For the GPS

data, the positions along the North, East and Down axes(in metres) wereconverted

to hexadecimalformat, soasto match the data aswould be given by a GPS in SIRF

sentences. Thesehexadecimalvalueswere converted to latitude and longitude using

the formulae given in section 3.1.2. The data for the initial state of the system at

time t = 0, was hardcoded into the program.

The Code Composer Studio handles �le inputs and outputs using a tool called

probe points, wherein each variable, to be read from or written to a �le, has to be

assigneda probe point and its own input or output �le, whichever applicable. These
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probe points are nothing but pointers which act as sensorreaders. Here they read

from a �le, on the actual hardware they will be directly getting voltages from the

sensorsor reading stored valuesfrom the DPRAM.

Code Composer Studio converts the whole C program into highly e�cien t in-

structions in assembly language(a �le in COFF format) which are then input to a

TMS320c3x assembler or linker. Cycle counting displays the number of clock cycles

in a single-stepoperation or in the run mode. To count the number of instruction

cyclesthe program takes, there is a tool called pro�le point. If we assigna pro�le

point to the beginningand end of the program and run it for a �xed number of read-

ings (i.e. a �xed number of times the inputs from the sensorsare given), the pro�le

points help us clock the number of cyclestaken by the program. Each instruction

in assembly languagehas a certain number of cyclesassignedto it. Once the total

number of cyclesis known, we can calculate the time taken by the program to run

each INS computation or each Kalman �ltering computation.

The number of instruction cycles were calculated using pro�le points for both

the INS program and KF individually. The INS program was run for 50s or 5001

steps(each readingtaken in stepsof 0.01s)and the total number of instruction cycles

were calculated to be 224744224,which when divided by 5001gave 44940cyclesper

INS computation. Since each cycle corresponds to 26ns, one INS computation on

an averagetook 1.17msto run completely. One INS computation excludesthe time

taken to read the inputs from the sensorsand comprisesof only the integration of

the inputs to give us the position. The maximum number of cycles taken by an

INS computation in the 5001 steps was 51475and the minimum was 44375which

correspond to a time of 1.34msand 1.15ms,respectively. Consideringthe worst case

possible,we can safelysay that an INS computation takesapproximately 1.5ms.The

program was run for one Kalman �lter computation and the number of instruction

cyclesusedwere2443314which correspondedto a time of 6.33ms.OneKalman �lter

computation includesthe time taken to readthe GPSvalues,theKalman �ltering and

the INS computation for that instant to �nally give us the updated position. To these
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Table 5.1: Instruction cyclesfor the program

Computation No. of Cycles Time tak en (26ns/cycle)

INS 44940 1.17ms

Kalman Filter 2443314 6.33ms

ADC reading { 1ms

DPRAM writing { 1ms

computation timings, we also needto add the time taken to read the sensorinputs

which is 1msand to write the outputs to the DPRAM which is another 1ms.

If the DSP is run at its maximum speedof 150MHz,the cycletime per instruction

is 13ns. Weplan to run the DSP at 75MHzwhich is why the cycletime per instruction

is 26ns.The memoryconsumedby the programwasonly 17K words. The full memory

of the DSP was not used. Henceno external RAM is required unlike if we use the

DSP TMS320VC31 which has only onboard memory of 1K word, and an external

memory chip needsto be attached to the board.

The INS programwasrun on CodeComposerStudio for 50secondsand the output

wasmatchedwith the output givenby the INS programwritten usingMATLAB. The

output from the Code ComposerStudio matchedwith the MATLAB output upto 3-4

decimal places. The output from the MATLAB code has a better match with the

actual tra jectory becauseMATLAB is a highly accurate professionalsoftware, and

its RungeKutta function is much more accuratethan the fourth order RungeKutta

usedin the C program.

The Kalman �lter programwasalsorun for 50secondswith the GPSupdate being

given every second. The output was similar to the output of the Kalman program

written in C.

Although the Code Composer Studio is a very slow working software, it is the

number of cyclestaken by the program which givesus a clear indication of the speed
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at which the program would run on the DSP.

5.4 Hardw are Issues and Future Work

Oncewehavedebuggedand run the programon the CodeComposerStudio simulator,

weneedto run it on the target hardwareusingan emulator. An emulator is a powerful,

high speedsoftware or kernel usedfor system-level integration and debuggingon the

DSP. Each DSP serieshas its own set of emulators. Emulators are user-friendly and

support hardware development on the target processor.Accessis provided to every

memorylocation and registerof the target processorthrough a JTAG cableconnector.

Emulators can be DOS basedor Windows based. The program in COFF format is

yet to be run on the emulator.

The speedof the INS and Kalman �lter computations have to be checked again

on the target hardware. Although the Code ComposerStudio givesus an idealistic

count, it is always safer to test on the target hardware. The results of the program

needto be checked after running on the hardware for a long time so as to �nd out

what level of accuracyis achieved on the target hardware.

As of now the sensorboard is not designed,and hencewe are giving inputs di-

rectly from the computer. Oncethe sensorsare �nalised, the sensormodelling in the

program hasto be adjustedaccordingto the sensorsbeingused. Calibration needsto

be doneto calculatethe biasesand scalefactorsof the accelerometersand gyroscopes.

Hewitson et al [36] and Shin [30] give us methods to calibrate the sensorse�ectively.

The initial state data at time t = 0 is currently hardcoded into the program. We

have to designa way to input the initial state directly from the hardware.

The output position is written onto the DPRAM. This needsto be fed into a

computer or any other display interface.
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Chapter 6

Conclusions

The INS system was modelled as given by the speci�cation sheets. A nine state

Kalman �lter was designedand implemented using the perturbation theory model

for postion, velocity and attitude. The accuracyof the results obtained was better

than the accuracygiven by the GPS and INS as individual systems. The accuracy

can be further improved if we increasethe statesof the �lter and model for the scale

factors,biasesand nonorthogonality of the sensors.The INS updatesweretakenevery

10ms,GPS updatesevery 1sand the Kalman �lter was executedevery 0.5s. Results

weregeneratedfor possibleGPSoutagesof 8sduring which the Kalman �lter relieson

the INS and the state prediction vector. Although the accuracydecreasesduring this

period, the system settles down once the GPS updates are available. Results were

also generatedfor possible introduction of Selective Availabilit y in the GPS data.

Although the accuracyof the output was not as good as that acheived by regular

GPS data (without SA), but neverthelessit was better than the GPS values.

The program of integration of the INS and GPS using Kalman �ltering was run

on the DSP simulator softwareand the computation time waswell within the require-

ments of 10ms.
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App endix A

The equations that have to be integrated for the INS to give the position of the

aircraft in term of latitude, longitude and height are reprinted below.

_e0 = �
1
2

(e1p + e2q+ e3r ) (A.1)

_e1 =
1
2

(e0p + e2r � e3q) (A.2)

_e2 =
1
2

(e0q+ e3p � e1r ) (A.3)

_e3 =
1
2

(e0r + e1q � e2p) (A.4)

with the four Euler parameterssatisfying the following equationat all points of time.

e0
2 + e1

2 + e2
2 + e3

2 = 1 (A.5)

Euler anglescan hencebe calculatedas shown below :

� = sin� 1[� 2(e1e3 � e0e2)] (A.6)

� = cos� 1

�
e0

2 � e1
2 � e2

2 + e3
2

p
1 � 4(e1e3 � e0e2)2

�
sign[2(e2e3 + e0e1)] (A.7)

 = cos� 1

�
e0

2 + e1
2 � e2

2 � e3
2

p
1 � 4(e1e3 � e0e2)2

�
sign[2(e1e2 + e0e3)] (A.8)

The angular rate of rotation of the earth in the North-East-Down frame of reference

is given below :


 =

2

6
6
6
4


 cos�

0

� 
 sin�

3

7
7
7
5

(A.9)
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! 0 =

2

6
6
6
4

_� cos�

� _�

� _� sin�

3

7
7
7
5

(A.10)

The measuredangularrates(denotedwith subscriptm) from the gyroscopesthen help

calculate the actual angular rates in the body frame using the following equation.
2

6
6
6
4

p

q

r

3

7
7
7
5

=

2

6
6
6
4

p

q

r

3

7
7
7
5

m

� DCM
h


 + ! 0
i

(A.11)

DCM =

2

6
6
6
4

cos� cos cos� sin � sin�

sin� sin� cos � sin cos� sin sin� sin� + cos cos� sin� cos�

sin� cos� cos + sin sin� sin� sin� cos� � cos sin� cos� cos�

3

7
7
7
5

(A.12)

From the measuredaccelerations(aX , aY , aZ ) and a given gravit y model for g de-

pending on position coordinateswe calculate the velocities.

_U = aX + Vr � Wq+ gsin� (A.13)

_V = aY � Ur + Wp � gcos� sin� (A.14)

_W = aZ + Uq � Vp � gcos� cos� (A.15)
2

6
6
6
4

_X

_Y

_Z

3

7
7
7
5

=

2

6
6
6
4

VN

VE

VD

3

7
7
7
5

= DCM T

2

6
6
6
4

U

V

W

3

7
7
7
5

(A.16)

_X = VN (A.17)

_Y = VE (A.18)

_Z = VD (A.19)

We can then calculate the latitude (� ), longitude (� ) and height (H ) using the fol-

lowing equations.

_� =
VN

Re
(A.20)

_� =
VE

Re cos�
(A.21)

_H = � VD (A.22)
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