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ABSTRA CT

Inertial navigation blendedwith other navigation aids like GPS, has gained sig-
ni cance due to enhancednavigation and inertial referenceperformance. The INS,
individually can calculatethe position of the aircraft without any help from the out-
sideworld. Howewer, a large number of errorsare introducedby sensordeadingto an
unacceptabledrift in the output. Hencea GPSis usedto aid the INS, usinga Kalman
Iter which helpsin estimating the errorsin the INS and thus updating position to

improved accuracy

The simulation of the integration of the INS and GPS using Kalman lItering has
beencompletedusingMATLAB and C. This hasbeentested on the simulator for the

target hardware. The details have beenexplainedin the report.
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Chapter 1

In tro duction

For automatic macdines, be it robots, aircraft or other autonomousvehicles,naviga-
tion is of utmost importance. Various systemsare usedin navigation of aircraft, viz.
inertial navigation systems(INS), global positioning systems(GPS), air-data dead
redkoning systems,radio navigation systems,Doppler headingreferencesystems,to
name a few. Our interest lies in integrating both the INS and the GPS to provide
the best possibleestimate of the aircraft position in terms of the latitude, longitude

and height above the surfaceof the earth.

The INS givesus the position, velocity and attitude of the aircraft but it is inun-
dated with errors due to the fact that any small bias error can grow the error with
time. Hence,an update or position x is taken from the GPS and using a Kalman
Iter we can estimatethe errorsin both the INS and the GPS thus giving the usera

better position information.

Applications are not limited to aircraft alone. Although theseintegrated systems
nd extensiwe usagein airborne vehicles,they have alsobeenusedin the navigation

of cars, shipsand satellites.

There are considerableadvantagesin deweloping this kind of a navigation system

as comparedto the onesused earlier in terms of compactnessand speed. Micro-



gyroscopesand GPS chips canbe integrated on a small board and cane ectively give
the position of the vehicle concerned.With the advent of MEMS technology all this

can be doneat extremely high levels of accuracyand at lower costs.

Our aim is to dewlop the GPS-INS integrated system so that it can be imple-
merted on realtime hardware like a microcortroller or a digital signalprocessor.Even
though high accuracysensordike gyroscogsand accelerometersre available, their
costsare on the higher side. Usageof low cost and low accuracysensorsmay nd
application wherehigh accuracyis not required. Initially the simulation of the whole
navigation would be done on a computer, where given the initial state of the air-
craft and regular updatesfrom the sensorsand the GPS, the program would return
the estimated position of the aircraft. Evertually this simulated model would be

implemerted on realtime hardware.

The next chapter describes in brief someof the INS/GPS systemswhich have
beenintegrated and implemerted on hardware. Chapter 3 givesan overview of the
working of ead of the subsystemsj.e. the INS and the GPS followed by a theoretical
explanation of Kalman Itering in general. Chapter 4 descrikes how the simulation
hasbeendone,viz. the INS programming, sensormodelling, GPS modelling and the
Kalman lter modelling. In this chapter we also seewhy the Kalman ltered output
is better than the output of the individual subsystems. The report concludeswith
the chapter discussingthe hardware usedto run the program as well as the issues

assaiated with the working of the whole system.



Chapter 2

Literature Surv ey

Seweral GPS-INS integration techniqueshave beenimplemerted. Someof them are

descrilked herebrie y.

Sdmidt [1] describes in detail the computations for a gimballed INS and the
strapdown INS. The 9 state Kalman Iter which is discussedy him usesa barometric
altimeter to correctfor the height. Bar-ltzhack et al [2] descrilesa cortrol theoretical
approad to INS/GPS integration using Kalman lItering in his paper. The psi-angle
error model explained has been used extensiwely in many models of the INS/GPS
Kalman Iter andalsohasbeenusedin this project. Grewal et al [3, 4] have discussed
in their books the working of the INS, GPS and Kalman ltering in detail and have

given a complicated model of a possibleKalman Iter with 54 states.

Wolf et al [5] use Systron Donner's MotionPak inertial measuremen unit (IMU)
and a Trimble AdvancedNavigation Sensor(TANS) Vector receiwer system (as the
GPS componert), which is a multi-antenna, attitude determination and position lo-
cation system. They have dewloped a real-time navigation software to calculate
position, velocity and attitude from the outputs of the MotionPak gyroscoges and
accelerometers.Besidesgiving position and velocity updates, TANS also gives atti-
tude measuremen data. A Kalman Iter with 27 states has beenimplemerted by

them. A Padkard Bell 486 computer was usedto carry out the computations.



Grejner-Brzezinsl et al [6] have tested the feasibility of attitude estimation im-
provemen by using high accuracy de ection of vertical (DOV) information in the
integrated GPS/INS navigation system. The estimability of attitude componerts im-
provesby adding partially compensatedgravity information. A fully digital Airb orne
Integrated Mapping System(AIMS) hasbeendesignedand the integrated INS/GPS
forms an integral part of this AIMS. A dual frequencydi erential GPS (DGPS) and
the Litton LN100 IMU are tightly integrated. IMU data was updated at 256Hz. A
certralized 21 state Kalman Iter wasusedto processthe GPSL1/L2 signalsaswell

asthe errorsfrom the INS. Accuracy of order of 10cmwas achieved.

Srikumar and Deori [7] have usedan airdata baseddeadred<oning systemto calcu-
late position of their MAV. Navigation accuracyhasbeenimproved by using updates
from a GPS receiwer aswell as a ground-basedtracking system. A Pertium 90MHz
personalcomputer has beenusedto cortrol navigation and many other features of

the aircraft.

Randle and Horton [8] descrile in their works the integration of GPS/INS using
a low costIMU consistingof micro-madined sensorsand on-board calibration. Sim-
ulations have beendone for both ight and automotive navigation. With complete
lossof GPS signals,position accuracyis showvn to be lessthan 10mafter 30s. Kalman

Iter has 23 statesand a DGPS was simulated to give measuremen updates.

Navigation for reusablelaunch vehicleshas beenstudied by Gaylor et al [9]. A
number of navigation sensorshave beenstudied and the GPS/INS integrated system
was settled for. Error models of INS and GPS operating in the vicinity of the Inter-
national SpaceStation have beendeweloped. E ects of signalblockageand multipath
errors of the GPS have beenmodelled. An extendedKalman Iter with 18 stateswas

deweloped.

Brown and Sullivan [10] have descriked test results for a systemthat usesan im-
proved kinematic alignmert algorithm suite providing high quality navigation solu-

tion usingdirect carrier-phaseand pseudo-rangeGPS measuremets, tightly coupled



with measuremets from a low costIMU system. A 32 state Kalman Iter hasbeen

implemerted using InterNav software made by Navsys Corporation.

Moon et al [11] rst processthe GPS values before sendingit to their 9 state
Kalman Iter. Honeywell's HG1700IMU has beenusedalong with a Motorola UT
Oncore GPS, which can track 8 GPS satellites simultaneously Salydev et al [12]
useMotionPak IMU and integrate it with GPS (GPS - GLONASS) and DGPS infor-
mation, to provide navigation capability to bridge GPS outagesfor tens of seconds.
Airb orne and ground tests have been conducted and robustnessof the system has

beenstudied. IMU data was recordedat 46Hz.

A 21 state lter using tightly coupled integration sdheme was implemerted by
Wang et al [13] and two digital signal processorsvere usedto carry out the compu-

tations. A sensitivity performancehas beenanalysedin their researt paper.

Kwon [14] has studied airborne gravimetry and comparedit to ground measure-
mert of gravity. The combination of GPS/INS is known to show very good perfor-
mancesfor recovering the gravity signal. A new algorithm using accelerationup-
datesinstead of corvertional position or velocity updates has beendeweloped. It is
computationally proven to be lessexpensiwe since navigation equationsneednot be
integrated. Real ight data hasbeentested upon the systemdesginedby Kwon and
the simulations have beendiscussedn his works in detail. A comparative study of

the Kalman lIter usingtraditional approad and the new approad hasbeendone.

Ronnbadk [15] hastested his INS/GPS navigation Iter written in C++ onan air
vehicle. A redundart 4 axesIMU called Tetrad hasbeenused. A 9 state Kalman lIter
wasimplemenrted with measuremets of position and velocity from the GPS. Gautier
[16] has designedGPS INS generalizedevaluation tool (GIGET) which aids in the
selectionof sensorcombinations for any generalapplication or set of requiremerns.
It includes a unique v e antenna, forty channel GPS receiwer providing attitude,
position and timing. Honeywell's HG1700tactical gradeIMU is integrated with this

GPSusinga 21 state extendedKalman Iter andtestedon their homemadeDragon y



unmannedair vehicle.

In his work, Mayhew [17] proposesse\eral methods for improving the position es-
timation capabilities of a systemby incorporating other sensorand data technologies,
including Kalman Itered intertial navigational systems,rule-basedand fuzzy-based
sensorfusion techniques, and a unique map-matding algorithm. Ground testing of
the systemhasbeendone. Deadredoning sensorsare usedto collect odometry data.
A Pentium 133MHzcomputerwasusedto carry out all the computationsand cortrol
handling of the aircraft. The 9 state Kalman Iter wasrun ewery time a measuremen

update from the INS took place.

Moore and Qi [18] have implemerted a direct Kalman ltering technique to inte-
gratetheir GPSandINS systemswherethey usetwo stageGPS ltering to preprocess
the GPS data beforethe Kalman lIter canuseit. Their eigh state direct Kalman
Iter usesthe position and velocity asits state vector. Shanget al [19] usetwo GPS
receiersto not only estimatethe position but alsothe azimuth alignmert. They use
a PC/104 microcomputer to carry out their computations. They have carried out a

tightly coupledimplemenation of the Kalman lIter.

Caoet al [20]have implemerted a 15 state Kalman lter successfullyjusingMEMS
basedsensorsfor intelligent transport systems. They have used a strapdown INS
system. Panzieri et al [21] have implemerted a 5 state extended Kalman Iter to
manoueer a robot's movemerns. They usea GPS becausehe usageof the robot is

outdoors.

Dorobartu and Zebhauser[22] have implemerted an extended Kalman Iter of
v e statesfor a 2-D caseasthey are usingit on a land vehicle. They usea DGPS to
get measuremen updatesewery 1sand have discussedesults when there are regular

GPS outages.



Chapter 3

INS,GPS, Kalman ltering

Today's trend in navigation seeghe rise of integrated navigation systems,wherethe
componerts (sensors)that are usually integrated are the Inertial Navigation Systems
(INS) and the Global Positioning System(GPS). The integration of two subsystems

provides more accuracythan that of individual subsystems.

3.1 Inertial Navigation Systems

Figure 3.1: Orientation of axes

The INS consistsof 3-axis gyroscopes which give the system computer the roll,



pitch and yaw rates about the body axesas shavn in gure 3.1 [23]. It also has
3-axis accelerometersvhich give the accelerationsalong the three body axes. There
are two basic inertial medanismswhich are usedto derive the Euler anglesfrom
the rate gyros, viz. stable platform and strap-down INS. We would be concerned
with the strap-dowvn INS wherethe gyros and accelerometersre “strapped-dovn' to
the aircraft body frame. The accelerationvaluesfrom the accelerometersare then
correctedfor rotation of the earth and gravity to give the velocity and position of the

aircraft.

3.1.1 Equations of Motion

The orientation of an aircraft with respectto a xed inertial frame of axesis de ned
by three Euler angles. The aircraft is imaginedto be oriented parallel to the xed

referenceframe of axes. A seriesof rotations bring it to the orientation about axes
OX, OY and Oz, asshowvn in gure 3.2[23]:

1. clockwise rotation about the yaw axis, through the yaw (or heading) angle

followed by

2. a clockwise rotation about the pitch axis, through the pitch angle , followed

by

3. a clockwise rotation about the roll axis, through the bank angle .

The relationship betweenthe angular rates of roll, pitch and yaw, p;q;r (measured

by the body mounted gyros), the Euler angles, ; ; and their rates,is given below.
2 3 2 32 3
— 1 sin tan cos tan p
g _z= § 0 cos sin zé qz (3.1)
_ 0 sin sec cos sec r

By integration of the above equationswe can derive the Euler anglesusing initial

conditions of a known attitude at a given time. But, for pitch anglesaround 90,

8



Figure 3.2: Euler Angles

the error becomesunboundedastan tendsto innit y. Quaternion algebracomes
to the rescuehere. We use four parameters, called the Euler parameters,that are

related to the Euler anglesas follows [24].

If ey; €1; e;e3 werethe four parametersthen in terms of angular rates, we have

€ = %(elp+ €q+ €sr) (3.2)
&= J(@pter & (33)
& = %(eoq+ &sp  er) (3.4)
€ = %(eor +eq €p) (3.5)

with the parameterssatisfying the following equation at all points of time.
e’ + e+ el+e?=1 (3.6)

The above equationscan be usedto generatethe time history of the four parameters

€n; €1; €&; and e;. The initial valuesof the Euler anglesare given which are usedto

9



calculate the initial valuesof the four parametersusing the following equations.

& = COS; COS COS; + sin 5 sin 5 sin 5 (3.7)
e = cosE cosé sin > sin 5 sin > cosE (3.8)
& = cos sin 5C0S5 + sin 5 0S5 sin 5 (3.9)
&= CoSy sin 5 sin >+ sin - €S COS (3.10)

Once we have calculated the time history of the four parameters,we can calculate

the Euler anglesusing the following equations.

= sin [ 2(e1es &) (3.11)

.2 24 @2
Bt T signi2(eses + evey)] (312)
1 Aees @&)

2 + e 2 2 2
cost! Pt = gign2eie; + epes)] (3.13)
1 4(ees  €p&)?

We now have with us the attitude of the aircraft. To calculate the position we use

2

£

1

= COs

the accelerationsgiven by the accelerometers.

The accelerationy(ay, a, and a,) of the aircraft alongthe three body axes,asread
by the accelerometersare given by the equations3.14- 3.16. U, V, W and p, g, r
are all available as states. If the accelerationdue to gravity (g) model is supplied as

a function of location around the earth, then U, \. and W can be calculated.

U=ayx + Vr Wqg+ gsin (3.14)
V.=ay Ur+ Wp gcos sin (3.15)
W =a;,+Ug Vp gcos cos (3.16)

The earth is rotating in spaceat a rate (15 per hour) around an axis South to

North asshavn in gure 3.3.

2
:E 0 z (3.17)



The motion of the vehicle at a constart height above the ground will induce an
additional rotation given by 2 3

_cos
| 0= § _ Z (3.18)

sin

The measuredangularratesinclude and! °, we havethe actual angularratesgiven

Qcos A
Q
Qsin A
/A0 Qcos A Local

North Vertical

Pole Qsin A
Circle of
Latitude

East

Local
Level
Plane

Equator

Phia: / South

Axis Pole

Figure 3.3: Local earth frame or Navigation frame

by 2 3 2 3
p p h i
gL=6q DCM +10 (3.19)
r r
m
where DCM

is the the direction cosinematrix or the transformation matrix, from
the local earth or navigation frame to the body frame, given by equation 3.20, _is

11



the rate of changeof longitude and —is the rate of changeof latitude. .
2 3
COS COS cos sin sin

DCM =§sin sin cos sin cos Sin sin sin 4+ cos cos Sin cos z

sin cos cos + sin  sin sin sin cos COS sin  cos cos
(3.20)

U, L and W are integrated to calculate the velocity componerts (U, V and W),
which are then transformed using the direction cosinematrix (equation 3.20)to give
velocity along North (Vy), velocity along East (V) and downward velocity (Vp) in

the navigation frame or local earth frame, asshovn in gure 3.3.

2 3 2 3 2 3
X \A U

E\L§=§VEZ:DCMT§VZ (3.21)
Z Vo W

Wn; Ve and Vp are then integrated to give distancesmoved along the navigation
axes (X;Y;Z) on the surfaceof the earth. Let ; and H denote the latitude,
longitude and height of the aircraft at any instant, then rate of change of latitude

[23, 25 is given by
W

_= 22
R, (3.22)
and rate of changeof longitude is given by
_ Wk
~~ Rucos (3.23)

where R is the radius of the earth. The rate of changeof altitude of the aircraft is
given by
H= V\p (3.24)

The position of the aircraft in terms of latitude, longitude and altitude can be

thus calculated using equations3.22,3.23and 3.24.

12



3.1.2 Errors in the INS

Most INS errors are attributed to the inertial sensors(instrument errors). These

are the residual errors exhibited by the installed gyros and accelerometergollowing

calibration of the INS. The dominant error sourcesare shavn in table 3.1[G 26].

Table 3.1: Sensorgeneratederrorsin the INS

Alignment errors

roll, pitch and headingerrors

Accelerometer bias or o set

a constart o set in the accelerometenutput

that changesrandomly after eat turn-on.

Accelerometer scale factor

error

resultsin an accelerationerror proportional to

sensedacceleration.

Nonortho gonality of gyros

and accelerometers

the axesof accelerometeand gyro

uncertainty and misalignmer.

Gyr o drift or bias

(due to temperature changes)

a constart gyro output without angular

rate presence.

Gyr o scale factor error

resultsin an angular rate error

proportional to the sensedangular rate

Random noise

random noisein measuremen

Errors in the accelerationsand angular rates lead to steadily growing errors in

position and velocity componerts of the aircraft, dueto integration. Theseare called

navigation errors and there are nine of them { three position errors, three velocity

errors, two attitude errors and one headingerror. If an unaided INS is used, these

errors grow with time. It is for this reasonthat the INS is usually aided with either

GPS, Doppler headingsensoror air-data deadredoning systems. Gravity model can

also causesomeerrors. The accelerationdue to gravity varies from placeto place

along the earth and alsowith height. Theseerrors have to be modelled accordingly

Inertial sensorsfor strapdown systemsexperiencemuch higher rotation as com-

pared to their gimballed courterparts. Rotation introduceserror medanisms that

13




require attitude rate-dependert error compensation.

3.2 Global Positioning System

3.2.1 Intro duction

GPS usesa one-way ranging technique from the GPS satellites that are also broad-
casting their estimated positions. Signalsfrom four satellites are usedwith the user
generatedreplica signal and the relative phaseis measured. Using triangulation the
location of the receiwer is xed. Four unknowns can be determined using the four
satellitesand appropriate geometry: latitude, longitude, altitude and a correctionto
the user'sclock. The GPSreceiwer coupledwith the receiver computer returns elewa-
tion anglebetweenthe userand satellite, azimuth anglebetweenthe userand satellite,
measuredclockwise positive from the true north, gealetic latitude and longitude of

the user.

The GPS ranging signal is broadcastat two frequencies: a primary signal at
1575.42MHz (L) and a secondarybroadcastat 1227.6 MHz (L,). Civilians use
L, frequencywhich hastwo modulations, viz. C/A or Clear Acquisition (or Coarse
Acquistion) Code and P or Preciseor Protected Code. C/A is unencrypted signal
broadcastat a higher bandwidth and is available only on L,. P code is more precise
becausedt is broadcastat a higher bandwidth and is restricted for military use. The
military operators can degradethe accuracyof the C/A code intentionally and this
is known as Selective Availability. Ranging errors of the order of 100m can exist
with Selective Availability. There are six major causesof ranging errors : satellite
ephemeris,satellite clock, ionosphericgroup delay, trop osphericgroup delay, multi-

path and receiver measuremen errors, including software.

The primary role of GPSis to provide highly accurateposition and velocity world-
wide, basedon range and range-rate measuremets. GPS can be implemerted in

navigation asa xing aid by being a part of an integrated navigation system, for

14



exampleINS/GPS.

3.2.2 Errors in GPS

Ephemeriserrors occur whenthe GPS message&loesnot transmit the correct satellite
location and this a ects the ranging accuracy Thesetend to grow with time from the
last update from the cortrol station. Satellite clock errorsa ect both C/A and P code
usersand leadsto an error of 1-2mover 12hr updates[27]. Measuremeh noisea ects
the position accuracy of GPS pseudorangeabsolute positioning by a few meters.
The propagation of theseerrorsinto the position solution can be characterizedby a
quartity called Dilution of Precision (DOP) which expresseshe geometry between
the satellite and the receiwer and is typically betweenl and 100. If the DOP is greater
than 6, then the satellite geometryis not good. lonosphericand trop osphericdelays
are introduced due to the atmosphereand this leadsto a phaselag in calculation
of the pseudorange.Thesean be correctedwith a dual-frequencyP-code receiers.
Multipath errors are causedby re ected signalsertering the front end of the receiwer
and masking the correlation peak. Thesee ects tend to be more prominert due to
the presenceof re ectiv e surfaces,where 15m or more in ranging error can be found

in somecases.

3.3 Kalman Filtering

The Kalman Filter (KF) is a very e ectiv e stochastic estimator for a large number of
problems,be it in computer graphicsor in navigation. It is an optimal conbination,
in terms of minimization of variance, betweenthe prediction of parametersfrom a

previoustime instant and external obsenations at a presein time instant.

15



3.3.1 Discrete Kalman Filter

The KF addresseghe generalproblem of trying to estimate the state x 2 <" of a
discrete-time controlled processthat is governed by the linear stochastic di erence
equation[3, 4, 28

Xk = AXg 1+ Bug + wy ¢ (3.25)

with a measuremenz 2 <™ that is
Zx = HXy + vy (3.26)

The variableswy and vy represeh the processand measuremen noise respectively.
They areassumedo beindependert of ead other, white, and with normal probability

distributions
p(w) N(0;Q); (3.27)
p(v) N(O;R): (3.28)

Q is the processnoisecovarianceand R is the measuremen noisecovariance. Equa-

tion 3.25is similar to the standard state di erential equation
X = Ax + Bu (3.29)

wherex is the state vector and u is the input or driving function, the only di erence
being that equation 3.25is a systemwhosestate vector is sampledfor discretetime

state, whereasequation 3.29is sampledfor cortinuoustime state.

Then n matrix A in the di erence equation3.25,relatesthe state at the previous
time stepk 1 to the state at the current time step k, in the absenceof a driving
function or a processnoise. The n 1 matrix B relatesthe optional cortrol input
u 2 <" to the state x. The m n matrix H in equation 3.26 relatesthe state x to

the measuremen zy.

An initial estimate of the processat somepoint t, is assumed.and this estimate
is basedon our knowledge of the processprior to tx. Let this a priori estimate be

denotedby %, , wherethe \hat" denotesestimate, and the \super minus" remindsus
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that this is the best estimate we have prior to assimilating the measuremen at ty.
Assuming that the error covariance matrix assaiated with R, is also known, then

the estimation error is de ned as
€ = Xk R, (3.30)
and the asseiated covariance matrix as
P« =Elee 1= E[(xc & )xk 2 )] (3.31)

Sincewe have assumeda prior estimate %, , we usez, to improve the prior estimate,

by the following equation.
R = kk + Kg(zk Hkkk) (3.32)

where X is the updatesestimate and K i is the blending factor or Kalman gain that

minimizesthe a posteriori error covariance equation 3.33.
Pi= Eleveg] = E[(xk  R)(xx R)7] (3.33)

Substituting equation 3.26 into 3.32 and then substituting the resulting expression

into 3.33we get
Pk: (| Kka)Pk (334)

where the Kalman gain which minimizes the mean-squareestimation error is given
by
K= P HIHP HE+ Ry & (3.35)

We then estimate the next step measuremeh %, ., , the error covarianceP,,, and
repeat the process.

kk+1 = ARy + Brug (336)
P = AcPKAg + Qx (3.37)

Weignorethe cortribution of wy becauset is a zeromeanfunction and not correlated

with the earlierw's.
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Figure 3.4: The Kalman Iter loop
3.3.2 Kalman Iter and navigation

KF is an extremely e ective and versatile procedurefor conbining noisy sensorout-
puts to estimatethe state of a systemwith uncertain dynamics. Noisy sensoroutputs
include outputs from the GPS and INS; state of the systemmay include position, ve-
locity, attitude and attitude rate of a vehicle or an aircraft; and uncertain dynamics
includesunpredictable disturbancesin the sensorparametersor disturbancescaused

by a human operator or a medium (lik e wind).

The KF is usedto estimate the errors introduced into the unaided INS system
due to the gyros and accelerometersas discussedin table 3.1. These errors form
the state vector ®, and the measuredvaluesof the state vector from the GPS forms
the measuremen vector z. Oncethe errors are modelled, the KF loop, as shown in
gure 3.4,is implemerted after giving the initial estimatesof the state vector and its
covariance matrix at time t = 0. This is the GPS-aidedINS system con guration,
and the errors are either compensatedby the feedforvard or the feedba& medanism

asshown in gures 3.5and 3.6.
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Chapter 4

Simulation

The simulation of the integration of INS and GPSusinga Kalman lter hasbeendone.
Separateprograms have beenwritten for modelling the INS, creating the errorsin
the sensorsand modelling the output of the GPS using both MATLAB and C.

4.1 Implemen tation

A program called Flight Dynamics and Controls (FDC) toolbox, when given the
initial conditions of the aircraft thrust and aeradynamics,gave asits output the time
history of the aircraft in the form of a state vector X, where
h it
X = Ppgqr aa a X Y Z Vg (4.1)

; ; arethe Euler anglesin radians,

p;q; r arethe roll, pitch and yaw ratesfrom the gyroscopesin radiansper second,
- ay; ay; a, are the accelerationsfrom the accelerometersn m/s?,
- X;Y;Z arethe distancesalongthe three axesin the navigation framein meters,

- Vy; ; arethe velocity of the aircraft in m/s, the angle of attack in radians

and the sideslipanglein radians, respectively.
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The FDC program can generatethesevaluesat any time step as required. Typical

time stepsor update rates range from 10ms- 100ms.

4.1.1 INS module

The INS program now takes 6 states from this time history, viz. p, q, r, ax, ay, a;.
Theseact as if the program is reading directly from the gyros and accelerometers.
Then the programintegratesand calculatesthe four Euler parametersusingequations
3.2- 3.6. From theseEuler parameters the Euler anglesare calculatedusingequations
3.11- 3.13. Now the accelerationsfrom the accelerometersare usedto calculate U,
V., W given by equations3.14- 3.16, which are then integrated to get the valuesof
U, V,W.

We now have the velocity componerts of the aircraft in the body frame. To
convert it to the navigation frame or local earth frame, we usethe DCM matrix, as
in equation 3.20, and calculate V t using equation 3.21. Thesevelocity componerts
arethen integratedto getthe position X, Y, Z alongthe three axesin the local earth
frame. The latitude, longitude and height can be calculated using equations3.22 -

3.24. All the integrations are carried out using fourth order Runge-Kutta methods.

The initial conditions for time t = 0 have to be given and they are calculated
using the valuesgeneratedby the FDC at t = 0. Equations 3.7 - 3.10 are usedto
calculate the valuesof the four Euler parametersat t = 0 taking the valuesof ,

from the FDC state vector X. Similarly, the initial valuesof the velocities are also

calculated using the following equations[23],

U = Vrcos cos 4.2

V = Vg sin (4.3)

W = Vr cos sin ; (4.4)

wherethe valuesof Vy, , aretaken from the FDC state vector X at time t = 0.

Finally, the initial valuesof X, Y, Z are alsotaken from their correspnding FDC
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courterparts.

4.1.2 GPS module

The GPS gives the latitude, longitude and altitude of the current location of the
receiver. What our program doesis that it corverts the X, Y, Z given out by the
FDC into latitude, longitude and altitude aswould be given out by the GPSrecei\r.
The update rate is 1 second. The GPS program usesWGS-84 approximation in
which the earth is consideredas an ellipsewith a semi-mgor axis (equatorial radius)
of a = 6;378 137m, and a semi-minor axis (polar radius) of b = 6;356 7523142n
[29].

It is necessaryto de ne the distance correspnding to a 1 changein longitude
(Fion) and latitude (F5) for a specied location (latitude and height or altitude).

The following equationsde ne F,, and F4 for a speci ed latitude and heigh h.

aZ
Fion = p + h cos 4.5
" " 180 "@Zcog + Fsir (*:9)
217
Flat = a +h (4.6)

3
180 a2cog + sl
Hence,the latitude and longitude at the current location ( ,; ) can be calculated

from the latitude and longitude from the previouslocation ( ;; 1) in the following

manner:
X
= + o, 4.7
? I:Iat ! ( )
Y
= + . 4.8
? I:Ion ! ( )

where X and Y arethe changesn position alongNorth direction and East direction
on the earth, respectively. If we considerthe earth as a sphere,F,, and Fj; can
be replacedby just the radius of the earth and the latitude and longitude can be
calculated. Howewer, to make the GPS modeling more authertic, we have considered

the earth asan ellipse.
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4.1.3 Sensor Mo delling

The accelerometersenseghe accelerationin terms of g and sendsit to the INS in
Volts by corversionusinga scalefactor. A certain o set at zerog calledthe bias exists
by default. The scalefactor and the bias details are available from the speci cation
sheetsof the accelerometersErrors arisein the accelerationsensedecausehe scale
factor and the bias are not xed. They vary stochastically and they lie within a
certain rangewhich is speci ed in the data sheetsof the accelerometersLet C mV/ g
be the nominal scalefactor, c mV/ g be the possibledeviation from the nominal scale
factor, D bethe voltageat 0 g o set and d be the deviation from that o set. If ag is
the accelerationsensedy the accelerometethen, the output from the accelerometer

in voltage units is given by
AcCouput = (C Qag+ (D d) (4.9)

¢ and d are normally distributed random numbers with zeromean,and c=3 and d=3

asthe standard deviations, respectively. d changesrandomly after ead turn-on.

This voltage signal from the accelerometepasseshrough the ADC. Hence,we
have to include the errors for the ADC aswell in AcCoypue - If We usea 16-bit ADC

with arangeof 0  5000mV,we divide AcCoupu With 222, round o the result and
5000
65536

accelerationmeasuredby the accelerometer.Once this is done, the AcCoypue is the

then multiply it by thus incorporating the errors due to the ADC into the

digitized voltage output which hasto be converted bad to accelerationin terms of g

which is done using the following equation,

a= AcCouput  Dec
Ce

(4.10)

wherea is the accelerationvaluesert to the INS program, C. and D arethe calibrated
valuesof the scalefactor and bias, respectively. The gyroscoge error modelling is also
donein a similar way accourting for the correspnding scalefactors and o set biases.
Theseerrorstogetherleadto a drift, which grows with time, in the output (location)

given by the INS and it could be up to hundreds of metres. Table 4.1 gives a set
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of valuesgiven by the speci cation sheetswhich were usedin the simulation. The
errors due to temperature e ects and due to the misalignmen of accelerometerand

gyroscofes have beenignored.

Table 4.1: Sensorspeci cations usedin the simulation

Quantit y Value Standard Deviation
Scalefactor of the accelerometer 250mV/ g %5 mV/g

Zerog O set of the accelerometer 2500mVv %5 mV
Scalefactor of the gyroscope 1.11mV/ /s 1—30%

Typical turn-on drift of the gyroscog | 0.12 /s {

Random noiseincorporated in the GPS | { 20m

4.1.4 Kalman Filter Mo dule

The error dynamics model given in the works of Schmidt [1], Bar-ltzhack et al [2],
and Grewal [4] has beenusedfor the simulation. The error dynamics equationsare
obtained when the nominal equationsare perturbed in the local level north-pointing
coordinate systemthat corresppndsto the geographiclocation indicated by the INS.
The di erential equationsthat descrike the error behavior of the INS are divided
into equations describing the propagation of the translatory errors and equations
describingthe propagation of attitude errors. Translatory errors are the velocity and
position errors. The translatory errorsand the attitude errorsare not coupledto eat
other. The nine state INS/GPS integration Kalman lIter will then be built usingthe
error dynamicsequations. The perturbation of the position, velocity, attitude DCM,

and gravity can be expresseds

="+ " (4.11)
N =vh+ V" (4.12)
Ch=(0 E"C! (4.13)



n

=g"+ ¢" (4.14)

wherer", v" and " denote the position, velocity and gravity vectorsin the nav-
igational frame, respectively; C} denotesthe attitude direction cosinematrix from
the navigational frame to the body frame and E" is the skew symetric form of the

attitude errors( ") 2 3
0 D E
EN = ( n ) = § D 0 N Z (4.15)

and”and denotecomputedvaluesand errors, respectively.

The linear position error dynamicscan be obtained by perturbing equations3.22-
3.24,which are the dynamicsequationsfor the gealetic positions. Sincethe position
dynamicsequationsare functions of position and velocity, the position error dynamics

equationsare obtained using partial derivatives[30]:

A= Fy 1"+ Ry VO (4.16)
where 0 1 0 1
a a a
@ @ @ (Re+h)2
F.. = @ @ @ Vg sin
r @ @ @ (Re+h)cosz (Re+h)2cos
@ @ @
@ @ @
0 1
@ a & 1
@n @t @b Re+h 0 0
= @_ @_ @_ = 1
Frv @ @ oh 0 ®wes O
@ a a 0 0 1

@N @ @b
and R is the radius of the earth and is considereda constar.

The velocity dynamicsequationis expresseds
("= 2 +19 gn4 " (4.17)

wheref® is the accelerationof the aircraft in the body frame, and! °are givenin

equations3.17 and 3.18. The gravitation vector in the navigation frame, g", can be
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.
appromiated by the normal gravity vector 0 0 ,and varieswith altitude.

Assuming a sphericalearth model, we can write
R 2
e
= ; 4.18
o RaF (4.18)

where ¢ is the normal gravity at h = 0. On perturbing equation 4.17 and using
equations 3.17, 3.18 and 4.18, we can obtain the velocity error dynamics equation
[1, 2, 30] asfollows::

_ b
vi=Fy "+ Ry VU (fT )T+ Cp f (4.19)
where
0 vz u2 1
E Vn Vb E tan
Ve COS  mopco 0| wmernz ¥ ®erny?
= i VE Wn VE Vb Vy VE tan .
Fur % 2(Weos  Vosin )+ ==t |0 ®om?z “(Rerh)? % ,
; VE2+ V2 2
2Ve sin 0 CEa R ey
0 1
Vi ; VE tan Vi
Reth 2 sin 277 Ro+
Fuw = %2 sin + Yelan Yoy lan 2 cos + gtg §
200 2 cos  2g%; 0

and fPis the perturbation in the accelerationvector in the body frame.

The attitude error dynamicsequation [30] can be written as

M= Feg M+ Fe v (( 19 )™ cp1 P (4.20)
where 0 1

sin 0 ﬁ

Fer = % O 0 (R:/_E‘h)z § ’
Vi VE ti
cos (Re+ hI)Ecos2 0 (Igefﬂ)z
1
0 Rorh 0
Fev = % ﬁ 0 0 §
0 L0
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and ! ? isthe perturbation in the angular rate vector betweenthe inertial frame and

the body frame.

A state spacemodel (equation 3.29) can be constructedby augmeriing the equa-
tions 4.16,4.19and 4.20 as follows :

X=Fx+ Gu (4.21)

whereF is the dynamicsmatrix, x is the state vector, G is a designmatrix, u is the

forcing vector function [1, 2, 30]:

0 1 2 3
Frr FI’V O rn
F = %FVF I:VV (fb ) % X = E Vn z
Fer Fev C +! O) ) :
0 1
0 0
fb
G= %CB 0 § u=4 5
| b
O Cg ib

The elemets of u are white noisewhosecovariance matrix is given by

E[u®u(®)’]= Q) (t ) (4.22)

wherethe operator denotesthe Dirac delta function whoseunit is 1/time [30]. Q

is called the spectral density matrix and hasthe form
Q=diag 2 2 2 2 2 2 (4.23)

where , and , are the standard deviations of the accelerometersaand gyroscofes,

respectively.

We now transform equation 4.21to its discretetime form :
Xk+1 =  kXk T Wi (424)

where | is the state transition matrix, and wy is the driven responseat ty.; due

to the presenceof input white noise during time interval (tx;tx+1) [28]. For the
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implemertation of the INS, becausethe time interval t = ty,; ty is very small, we

can numerically approximate the state transition matrix as
k=exp(F t) I +F t (4.25)
The covariancematrix assaiated with wy is

Q= Ewewg]  «GQG' | t (4.26)

If the norm of Qy is larger than the real one,the Kalman Iter trusts the measure-
merts more than the system,thus making the estimatesnoisy due to free passageof
measuremennoise[30. Howewer, there is no time lag. If the norm of Qy is lessthan
one, the time lag exists. When the norm of Qy is much smaller than the real one,
the lter diverges,which may result in numerical instabilities. Hence,for low cost
inertial systems,Qx must be selectedpessimistically so that the trajectory follows
that of the GPS. The elemens correspndingto f, should be large enoughso that

they can accour for the uncertairties in gravity aswell as sensorimperfection.

The obsenation equation 3.26 expresseshe vector measuremety zy, at time ty
as a linear combination of the state vector x,, and a random measuremen error, v.
The processnoise,wy and the measuremen noise, vy are uncorrelated, hencetheir

covarianceis 0. The covariance matrix for vy is given by
E[vkvy]= R (4.27)

The Kalman lter isthenimplemerted usingequations3.32- 3.37. The position from
GPS is consideredas measuremets. The formulation of the measuremen equation

can be written as
0 1

INS  GPS
Zx=Trns Teps = % INS GPS § He= 13 3‘03 3‘03 3 (4.28)

hINS hGPS

Since and arein radiansand hencevery small, they causenumerical unstabil-

ities in calculating the Kalman gain K . Hence,the rst two rows are multiplied by
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(Re + h) and (Re + h) cos , respectively [30]. The measuremen equation now takes

the form :
0 1
(Re+ h)( ins  cPs)
Zk = %(Re+h)cos (Ins  cps)
hINS hGPS
0 1
(Re+ h) 0 0
Hy = % 0 (Re+ h) Ccos 0({03 3|05 3 § (429)
0 0 1
and the following measuremen noisematrix hasbeenused
Rc=diag 2 2 2 (4.30)

which can be obtained from GPS processing.In our simulation, we have taken the

error sphereof the GPSto have a radius of 20m. Hence = = = 20m.

The initial estimation uncertainty standard deviations must be given to start a
Kalman Iter. If aninertial measuremenunit is initialised in stationary mode, the
position uncertainty will be that of the GPS solution, the velocity uncertainty zero
and the attitude uncertainty will depend wholly on the accelerometerand gyroscope

biases[30]. If the biasescan be estimated, the attitude uncertainty can be reduced.

The estimated errors are fed badk to the medanization (INS module) (see gure
3.6) or fed forward to the output (gure 3.5). In the feedforvard method, the inertial
systemoperatesasif there wasno aiding : it is unaware of the existenceof the lIter
or the external data. The disadwantage of this method is that the medanization
can experienceunboundederror growth, which makesunbounded error obsenations
delivered to the Kalman lIter. This causesproblem to the linear Iter since only
small errors are allowed due to the linearization process. Therefore, the feedbak
method is optimal for low costINSs. The estimated state vector Xy is usedto correct
for the position, velocity and attitude calculated by the INS, using equations4.11 -

4.13ewery time a measuremety zy, is taken, i.e. every 1 second.
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r"=p" " (4.31)

vi=9" v (4.32)
The following characteristic holds for the rst order attitude errors:

(1 E"Mi=(0+E" (4.33)

Hence,equation 4.13 can be manipulated to yield the DCM attitude feedba& as
follows :

Ch=(+EMED (4.34)

After feedba& is done, the error state vector should be set to zero, becausethe
state vector is zero until the next measuremets are made for a feedbak nine-state
INS/GPS integration Kalman Iter. If the feedba& is madeewerytime measuremets

take place,the state prediction doesnot needto be implemerted [30].

4.2 Results

In this sectionwe discussthe results obtained from the simulation of individual sub-

systems,i.e. the INS and GPS and the integrated system.

4.2.1 Individual subsystems

Due to medanical errors existing in the accelerometersand gyroscoges, the INS,
individually, doesnot accurately give the position of the aircraft. As seenin gures
4.1- 4.3, the unaided INS (blue line) deviatesfrom the actual trajectory (black line)
by a very large extert. This simulation has beendone by modelling the sensorsas
explainedin section3.1.3. The updatesfrom the gyroscopesand accelerometersare

taken ewvery 10ms. The above mertioned gures show us the typical output given
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by the GPS (red circles), with an update taken every second. A standard deviation
of 20m has beenassumedin modelling the GPS output. The GPS hasa long term
accuracy and the INS has a short term accuracy hencethe individual systemshby
themselesare not enoughto give us a good and accuratemeasureof the location. If
Selective Availability is introduced,the GPS output would have a standard deviation
of around 40-50m. Hence,we go for an integrated systemof the INS and GPS using

a Kalman lter.
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Figure 4.1: Distance along North calculated by the unaided INS and GPS
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Figure 4.2: Distance along East calculated by the unaided INS and GPS
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Figure 4.3: Altitude calculated by the unaided INS and GPS
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4.2.2 Integrated system

A nine-state model Kalman Iter was implemerted as descriked in section 3.1.4.
Figures 4.4 - 4.2.2, shav the output of the simulation as well as the GPS output
simulated for a period of 200s. The standard deviation chosenfor the accelerometers
herewas 10mGal. The standard deviations of the accelerometersvas varied and we
have got two setsof outputs. As given in the works by Ronnbadk [15] and Shin [3(],
the standard deviations of the accelerometersvere increasedto give an output with
a much better accuracyas seenin gures 4.7 - 4.9. The standard deviations of the

accelerometerghosenwas 30mGal.

The update from the accelerometersand gyroscopes was taken ewvery 0.01s,the
GPS update was taken ewery 1s and the Kalman Iter was run ewvery 0.5s[17] to
achieve better accuracy Every alternate 0.5sinstant, when the GPS update is not
available, equation 3.32is usedto predict the error state Ry, using the most recen
GPS update as the measuremety i.e. the GPS update is taken constart for that
whole one second. This also comesin use when there are GPS outages. Whene\er
the GPSupdate is taken, ®, is madezero,and wheneer the GPSupdate is not taken
(every alternate 0.5sor whenthere are GPS outages),®, is left asit is and updated

using the equations3.32- 3.36.

The graphsfor attitude computed and correctedby the Kalman Iter are given
in gures 4.10- 4.12. We cannot expect the Kalman Iter to correct the attitude
given by the INS perfectly as attitude is not a part of the measuremen vector. We
canonly correctthe attitude given by the INS using the attitude errors predicted by
the state matrix. This correctedattitude forms a part of the integration loop in the

whole system. The graphs4.10- 4.12 correspnd to the graphs4.7 - 4.9.

Figures4.13- 4.15show usthe resultsfrom running the programwhenwe assume
a GPS outageof 8s, from the period t = 25sto t = 32s. For this time period of GPS
outage, the GPS valuesusedby the program remain the sameas the last measured

values,i.e. the valuesmeasuredat t = 24s. At t = 33s,the GPS starts readingagain,
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and new valuesare read by the program. During this time the Kalman lIter relies
totally on the INS and state predictions, and the accuracyis a ected aswe can see
from the graphs. But oncethe new GPS valuesare read by the program, the Kalman
Iter takesvery lesstime, of the order of a few secondsto settle down towards the

actual trajectory.

If Selective Availability (SA) is introduced or exists in the GPS, the standard
deviation of the GPS position measuredis around 40-50m. Figures 4.16 - 4.18 shav
the output of the program, when SA was introduced with a standard deviation of
40m. The Kalman Iter doesnot know that SA has beenintroduced, and it still
usesthe standard deviation of 20m, as given by the speci cation sheetsof the GPS
receiwer, in the measuremen noisecovariance matrix Ry. SA hasbeenintroducedin
the GPS valuesfor the period of 200s. We can seethat due to introduction of SA,
the accuracyof the output hasdecreasedut it still better than the GPS but not as
good aswhat it would be without SA. If while running the programfor a longertime,
suddenly we introduce SA, ewen then the program will not waver from its regular
output, although the accuracywill decreasdor the time period in which SA hasbeen

introduced.
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Figure 4.4: Kalman Itered output of distancealong North

Figure 4.5: Kalman Itered output of distancealong East

Figure 4.6: Kalman lItered output of Altitude
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Figure 4.7: Distance along North calculatedwith higher variance of accelerometers

Figure 4.8: Distance along East calculatedwith higher variance of accelerometers

Figure 4.9: Altitude calculatedwith higher variance of accelerometers
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Figure 4.14: Distance along East calculatedwith GPS outage between25sand 33s
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Distance along North in metres vs Time in Seconds
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Chapter 5

Hardw are Implemen tation

The presen study is undertaken concurrerly with a Masters project to designand
dewelop a hardware for implemerting the INS/GPS integrated system[35]. The ob-
jective of this project included generatingrequiremerts for the other project and to
test the INS/GPS integrated system program on the hardware. The hardware has
beenspeci cally designed[35]for a mini aerial vehicle(MAV). For the computations
of the INS and the Kalman Filter a digital signal processor(DSP) has beenusedin

the hardware.

5.1 Hardw are Description[35 ]

The systemto be usedis compact,light and single supply operated. The sthematic

of the whole systemis showvn in gure 5.1.

The systemcan be divided into two blocks :

GPS and INS Data Acquisition (GIDAC) card

Navigation ProcessorCard (NPC)

The analogsignalsfrom the accelerometersnd gyroscopesare signal conditioned
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Figure 5.1: Sthematic of the hardware system

(ltered for noise,and scaledto the range of 0 { 5V) to the data acquisition input
range using a secondorder Butterworth low pass lter. Thesesignalsare sampled
simultaneouslyusinga 16-bit parallel output, analog- to - digital corverter ADS8364

made by TexasInstruments Inc.

Generall6-bit ADCs have multiplexers at the input, which do individual sampling
causingdelays if all inputs have to be taken at the sameinstant, hencethe ADS8364
hasbeenchosenasit is a six channel, simultaneoussampling, 16-bit parallel ADC. The
deviceincorporatesan internal bu er that canbe poweredfrom the same3.3V supply
asthe DSP. All the six sensorvoltagescan be read simultaneously using this ADC
and they canbe processedy the NPC to give usthe required position. Simultaneous
samplingof input signalsare performedto eliminate any phaselag which might exist

otherwise. All digitized signalsfrom the ADC are interfacedto the NPC.

To relieve main processordrom computational processingoverheadduring slov
speedserial I/0, a Field ProgrammableGate Array (FPGA) baseddedicatedserial
port interface is used. The total number of chips is reducedto oneand it is much

faster than the existing microcortroller schemes.
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In the system architecture, the FPGA chip is programmedto receiwe the GPS
data from GPS receiwer, and generatesa busy signal when accessingthe internal
Dual Port RAM (DPRAM) of FPGA. This low-goingbusy signalinterrupts the DSP
processor,and the processorfetchesthe data from internal DPRAM of the FPGA
chip. The DPRAM storesthe position updatesgiven by the GPS, in the proprietary
(SIRF sentencesfor the GPS receiver we are using) seriencesformat, every second.
Asyndhronous comrunication is maintained betweenthe GPS module and the NPC

card using DPRAM, thus saving the processortime during the transfer of data.

The INS computations and its integration with the GPS is carried out on the
Navigation ProcessorCard (NPC). The NPC comprisesof a TMS320VC33 DSP
manufactured by TexasInstruments Inc. and its supporting hardware. This DSP
board gives us the freedomto download the software directly from the computer
using a printer port interface and communicate with other computer programs as
well. The TMS320VC33 is a oating point DSP with an instruction cycle time of
13nsor 150MHzand providesupto 75 MIPS, 150M FLOPS. The DSP hasa standard
50 pin connectorinterface with external circuitry. It has 34K words (1 word = 32
bits) dual accessSRAM, bootloader and ondiip peripherals. It is inexpensivwe and
easilyavailable. An inexpensiwe tool for the processolis available. The processohas
32 bit data bus and 24 bit addressbus. The cortrol signalsfor selectingperipheral
chips on the DSP board are generatedusing programmablearray logic (PAL). The
DSP board hasa DPRAM 7130 for parallel data transfer through standard 20-pin
connector. A standard 6-pin interface for serial I/O exists on the board and can be
con gured as a generalpurposel/O pins. It also has a standard-14 pin emulator

connector.

5.2 System Flow

The INS/GPS integration program has seeral subprogramsand header les, along

with asserbly coding for initialisation of DSP and its peripherals.
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An interrupt vector table is createdwith /INTO and /INT1 de ned asinterrupts
from the GPS and INS acquisitions. Two timers, Timer0O and Timerl, are then
con gured using the Timer Glolal Control registersand Timer Period registersin
the initialization routine. The interrupt /INTO is received from the FPGA chip, when
the GPS update ewvery secondtakes place, and is given the highest priority. The six
channelsof the ADC (Ao, A4, Bo, B1, Co and C,) are paired up two at atime. Hence,
the end of conversion (EOC) signal comesin 3 pulsesfrom the ADC. Therefore, a
variable count is assigneda value 2 during initialization for courting the EOC signal
from the ADC. Variablesto beginthe INS computations, Start _INS, and to ched if
the GPSreadingsare available, GPSavailable , aresetto low or 0. Timer0O generates
aclock of 5MHz for the ADC samplingand Timerl generatesnterrupts at a frequency

of 100Hz. Thesetimers are enabledby con guring the Timer Control registers.

On initialization, a software resetis givento the ADC chip by the program, which
is then con gured to operatein CYCLE MODE. In this mode, the six channelsof the
ADC arereadin a xed order every time an INS acquisition takes place. TimerQ0 is
run, thus providing a clock to the ADC cortinuously. Timerl generatedinterrupts at
a rate of 100Hzfor ead INS time step. On ewery Timerl over ow ag, the /[HOLDXx
signals (the X' in /HOLDxstands for eat of the six channelsof the ADC, for eg.
/HOL\,) are made low and at this instant the ADC samplesall the six channels
simultaneously During this time the main program is waiting in an in nite loop or
IDLE mode. The respective Interrupt ServiceRoutines (ISR) are enabledbasedon

the interrupts receiwed.
When the EOC of ADC (/INT1) occurs,the data of all six channelsis stored.
Start _INS is setto high or 1. The program then returns from the /INT1 ISR.

When the reading from GPS by the FPGA (/INTO) occurs, the data is read
from the internal DPRAM within the FPGA, and GPSavailable is setto high
or 1. The program then returns from the /INTO ISR.

When the Start _INS and GPSavailable variables are set high, the INS and
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Kalman lter computations are performedin the main program loop, respectively.
Figures5.2- 5.4[35 shav o wcharts describingthe o w of instructions in the initial-

ization, ISR and computation part of the program.

Figure 5.2: Flow of instructions : initialization and reading data
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Figure 5.3: Interrupt ServiceRoutines (ISR)

Figure 5.4: Flow of instructions : computation and output
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5.3 DSP Simulator

The C program for INS/GPS integration using Kalman Itering, hasbeentried and
testedon the simulator for the TMS320VC33 DSP seriesin a software simulator made
by TexasInstruments Inc. known as Code Composer Studio c3x4x This software
simulates the actual DSP on the computer. With this simulator we can debug the
programs without the target hardware. Time critical code, as well as individual
portions of the program canbe tested. The simulator usesthe standard C or asserbly
sourcedebuggerinterface,allowing the userto debugthe programsin C or in asserbly

languageor both.

Earlier, the integration code was written for a standard C compiler which would
take its inputs from les ewery 10msfor the INS and every secondfor the GPS. These
inputs werethe accelerationsand angular ratesin standard decimalformat, on which
sensomodelling wasdone. For the integration codeto run on Code ComposerStudio,
the voltages obtained after modelling the sensors,were cornverted to hexadecimal
format. Thesewere then manipulated upon, as explainedin section 3.1.3 on sensor
modelling, so asto account for the ADC modelling. The modi ed values (digitized
signalsfrom the ADC) were cornverted bad to accelerationsand angular rates, using
the calibration values of the biasesand scalefactors, as required by the INS/GPS
integration programs. The valuesof accelerationsand angular rates were generated
usingthe FDC programinsteadof usingactual sensorson ying vehicle. For the GPS
data, the positionsalongthe North, East and Down axes(in metres)were corverted
to hexadecimalformat, soasto match the data aswould be given by a GPSin SIRF
sentences. Thesehexadecimalvalueswere corverted to latitude and longitude using
the formulae given in section 3.1.2. The data for the initial state of the systemat

time t = 0, was hardcoded into the program.

The Code Composer Studio handles le inputs and outputs using a tool called
proke points, wherein ead variable, to be read from or written to a le, hasto be

assigneda probe point and its own input or output le, whichewer applicable. These
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probe points are nothing but pointers which act as sensorreaders. Here they read
from a le, on the actual hardware they will be directly getting voltagesfrom the

sensorsor reading stored valuesfrom the DPRAM.

Code Composer Studio corverts the whole C program into highly e cient in-
structions in assemly language(a le in COFF format) which are then input to a
TMS320c3x assembler or linker. Cycle courting displays the number of clock cycles
in a single-stepoperation or in the run mode. To court the number of instruction
cyclesthe program takes, there is a tool called pro le point. If we assigna pro le
point to the beginningand end of the program and run it for a xed number of read-
ings (i.e. a xed number of times the inputs from the sensorsare given), the pro le
points help us clock the number of cyclestaken by the program. Ead instruction
in asserbly languagehas a certain number of cyclesassignedto it. Once the total
number of cyclesis known, we can calculate the time taken by the program to run

eat INS computation or eaty Kalman Itering computation.

The number of instruction cycleswere calculated using pro le points for both
the INS program and KF individually. The INS program was run for 50s or 5001
steps(ead readingtakenin stepsof 0.01s)and the total number of instruction cycles
were calculatedto be 224744224which when divided by 5001 gave 44940cyclesper
INS computation. Since ead cycle correspnds to 26ns, one INS computation on
an averagetook 1.17msto run completely One INS computation excludesthe time
taken to read the inputs from the sensorsand comprisesof only the integration of
the inputs to give us the position. The maximum number of cyclestaken by an
INS computation in the 5001 stepswas 51475and the minimum was 44375which
correspnd to a time of 1.34msand 1.15ms,respectively. Consideringthe worst case
possible,we can safelysay that an INS computation takesapproximately 1.5ms. The
program was run for one Kalman Iter computation and the number of instruction
cyclesusedwere 2443314which correspndedto a time of 6.33ms.One Kalman lter
computation includesthe time takento readthe GPSvalues,theKalman Itering and

the INS computation for that instant to nally give usthe updated position. To these
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Table 5.1: Instruction cyclesfor the program

Computation No. of Cycles | Time taken (26ns/cycle)
INS 44940 1.17ms
Kalman Filter 2443314 6.33ms

ADC reading { 1ms

DPRAM writing { 1ms

computation timings, we also needto add the time taken to read the sensorinputs

which is Imsand to write the outputs to the DPRAM which is another 1ms.

If the DSPis run at its maximum speedof 150MHz,the cycletime per instruction
is 13ns. We plan to run the DSP at 75MHz which is why the cycletime perinstruction
Is 26ns. The memoryconsumedby the programwasonly 17K words. The full memory
of the DSP was not used. Henceno external RAM is required unlike if we usethe
DSP TMS320VC31 which has only onboard memory of 1K word, and an external

memory chip needsto be attached to the board.

The INS programwasrun on Code ComposerStudio for 50 secondsand the output
wasmatched with the output givenby the INS programwritten usingMATLAB. The
output from the Code ComposerStudio matched with the MATLAB output upto 3-4
decimal places. The output from the MATLAB code has a better match with the
actual trajectory becauseMATLAB is a highly accurate professionalsoftware, and
its RungeKutta function is much more accuratethan the fourth order Runge Kutta

usedin the C program.

The Kalman lter programwasalsorun for 50 secondswith the GPS update being
given every second. The output was similar to the output of the Kalman program

written in C.

Although the Code Composer Studio is a very slov working software, it is the

number of cyclestaken by the program which givesus a clear indication of the speed
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at which the program would run on the DSP.

5.4 Hardw are Issues and Future Work

Oncewe have debuggedand run the programon the Code ComposerStudio simulator,
we needto run it onthe target hardware usingan ermulator. An emulator is a powerful,
high speedsoftware or kernel usedfor system-leel integration and debuggingon the
DSP. Each DSP serieshasits own set of ermulators. Emulators are user-friendly and
support hardware dewelopmen on the target processor.Accessis provided to every
memorylocation and registerof the target processothrough a JTAG cableconnector.
Emulators can be DOS basedor Windows based. The program in COFF format is

yet to be run on the emulator.

The speedof the INS and Kalman Iter computations have to be chedked again
on the target hardware. Although the Code Composer Studio gives us an idealistic
count, it is always saferto test on the target hardware. The results of the program
needto be cheded after running on the hardware for a long time soasto nd out

what level of accuracyis achieved on the target hardware.

As of now the sensorboard is not designed,and hencewe are giving inputs di-
rectly from the computer. Oncethe sensorsare nalised, the sensormodelling in the
program hasto be adjusted accordingto the sensordeing used. Calibration needsto
be doneto calculatethe biasesand scalefactors of the accelerometersind gyroscopes.

Hewitson et al [36] and Shin [30] give us methods to calibrate the sensorse ectively.

The initial state data at time t = 0 is currertly hardcoded into the program. We

have to designa way to input the initial state directly from the hardware.

The output position is written onto the DPRAM. This needsto be fed into a

computer or any other display interface.
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Chapter 6

Conclusions

The INS system was modelled as given by the speci cation sheets. A nine state
Kalman lter was designedand implemerted using the perturbation theory model
for postion, velocity and attitude. The accuracyof the results obtained was better
than the accuracygiven by the GPS and INS as individual systems. The accuracy
can be further improved if we increasethe statesof the Iter and model for the scale
factors,biasesand nonorthogonality of the sensors.The INS updatesweretakenevery
10ms,GPS updatesewery 1sand the Kalman Iter wasexecutedewery 0.5s. Results
weregeneratedfor possibleGPS outagesof 8sduring which the Kalman Iter relieson
the INS and the state prediction vector. Although the accuracydecreasesluring this
period, the system settles down oncethe GPS updates are available. Results were
also generatedfor possibleintroduction of Selective Availability in the GPS data.
Although the accuracy of the output was not as good as that adeived by regular

GPS data (without SA), but newerthelessit was better than the GPS values.

The program of integration of the INS and GPS using Kalman Itering was run
on the DSP simulator software and the computation time waswell within the require-

merts of 10ms.
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App endix A

The equationsthat have to be integrated for the INS to give the position of the

aircraft in term of latitude, longitude and height are reprinted below.

@= S(ep+eq+ en) (A1)
e = %(eop+ &r €0 (A.2)
& = %(eoq+ &sp  err) (A.3)
€ = %(eor +eq ep) (A.4)

with the four Euler parameterssatisfying the following equationat all points of time.
e’ + el+el+e’=1 (A.5)
Euler anglescan hencebe calculatedas shovn below :

=sin '[ 2185 &&)] (A.6)
e? &2+ e?
rJ

1 4(e1es  epey)?

1 e02 + e12 e22 e32

P T e oo sign[2€.e; + €oes)] (A.8)
1

The angular rate of rotation of the earth in the North-East-Down frame of reference
2 3
cos
= E 0 z (A.9)
sin
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1

cos sign2(exe; + epey)] (A7)

Ccos

is given below :



2 3
Cos

1 0= § _ z (A.10)
_sin
The measuredangularrates(denotedwith subscriptm) from the gyroscogsthen help

calculate the actual an%ular?’rateg in t?tle body frame using the following equation.

p p h i
§q2=§qz DCM 410 (A.11)

r r

m

2 3
COS cOoS COS Sin sin
DCM = § sin sin cos sin cos sSin sin sin 4+ cos cos Sin cos z

sin cos cos + sin  sin sin sin cos CcOsS sin  cos cos
(A.12)

From the measuredaccelerations(ay , ay, az) and a given gravity model for g de-

pending on position coordinates we calculate the velocities.

U=ax + Vr Wq+ gsin (A.13)

V=ay Ur+ Wp gcos sin (A.14)

2\Al 3 + Uqg 3Vp gcoszcos (A.15)

) &

§ \Lz § Z DCM T§ Z (A.16)
Z Vb

X_= Wy (A.17)

Y = Ve (A.18)

Z=\p (A.19)

We can then calculate the latitude ( ), longitude ( ) and height (H) using the fol-

lowing equations.

Wn
=N A.20
R, (A.20)

VE
= A.21
— RecCOS ( )
H= Vp (A.22)



